Citation: | WANG Peng, FU Qi-dong, LI Yu-rui, YE Fang-wei. Research developments on photonic moiré lattices[J].Chinese Optics, 2021, 14(4): 986-997.doi:10.37188/CO.2021-0110 |
[1] |
叶芳伟. 生活中的莫尔晶格[EB/OL][2021.07.21]
https://www.physics.sjtu.edu.cn/fangweiye/moire.
YE F W. Moiré lattices in life[EB/OL][2021.07.21]
https://www.physics.sjtu.edu.cn/fangweiye/moire.
|
[2] |
OHTA T, BOSTWICK A, SEYLLER T,
et al. Controlling the electronic structure of bilayer graphene[J].
Science, 2006, 313(5789): 951-954.
doi:10.1126/science.1130681
|
[3] |
GEIM A K, GRIGORIEVA I V. Van der Waals heterostructures[J].
Nature, 2013, 499(7459): 419-425.
doi:10.1038/nature12385
|
[4] |
OOSTINGA J B, HEERSCHE H B, LIU X L,
et al. Gate-induced insulating state in bilayer graphene devices[J].
Nature Materials, 2008, 7(2): 151-157.
doi:10.1038/nmat2082
|
[5] |
LIU L X, ZHOU H L, CHENG R,
et al. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene[J].
ACS Nano, 2012, 6(9): 8241-8249.
doi:10.1021/nn302918x
|
[6] |
LAI Y H, HO J H, CHANG C P,
et al. Magnetoelectronic properties of bilayer Bernal graphene[J].
Physical Review B, 2008, 77(8): 085426.
doi:10.1103/PhysRevB.77.085426
|
[7] |
LI J, ZHANG R X, YIN ZH X,
et al. A valley valve and electron beam splitter[J].
Science, 2018, 362(6419): 1149-1152.
doi:10.1126/science.aao5989
|
[8] |
BITTENCOURT V A S V, BERNARDINI A E. Lattice-layer entanglement in Bernal-stacked bilayer graphene[J].
Physical Review B, 2017, 95(19): 195145.
doi:10.1103/PhysRevB.95.195145
|
[9] |
LI H Y, YING H, CHEN X P,
et al. Thermal conductivity of twisted bilayer graphene[J].
Nanoscale, 2014, 6(22): 13402-13408.
doi:10.1039/C4NR04455J
|
[10] |
CAO Y, FATEMI V, DEMIR A,
et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J].
Nature, 2018, 556(7699): 80-84.
doi:10.1038/nature26154
|
[11] |
CAO Y, FATEMI V, FANG SH A,
et al. Unconventional superconductivity in magic-angle graphene superlattices[J].
Nature, 2018, 556(7699): 43-50.
doi:10.1038/nature26160
|
[12] |
PARK M J, KIM Y, CHO G Y,
et al. Higher-order topological insulator in twisted bilayer graphene[J].
Physical Review Letters, 2019, 123(21): 216803.
doi:10.1103/PhysRevLett.123.216803
|
[13] |
SEYLER K L, RIVERA P, YU H Y,
et al. Signatures of moiré-trapped valley excitons in MoSe
2/WSe
2heterobilayers[J].
Nature, 2019, 567(7746): 66-70.
doi:10.1038/s41586-019-0957-1
|
[14] |
YUAN L, ZHENG B Y, KUNSTMANN J,
et al. Twist-angle-dependent interlayer exciton diffusion in WS
2-WSe
2heterobilayers[J].
Nature Materials, 2020, 19(6): 617-623.
doi:10.1038/s41563-020-0670-3
|
[15] |
CHEN G R, JIANG L L, WU SH,
et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice[J].
Nature Physics, 2019, 15(3): 237-241.
doi:10.1038/s41567-018-0387-2
|
[16] |
JIANG B Y, NI G X, ADDISON Z,
et al. Plasmon reflections by topological electronic boundaries in bilayer graphene[J].
Nano Letters, 2017, 17(11): 7080-7085.
doi:10.1021/acs.nanolett.7b03816
|
[17] |
LIU Y, WEISS N O, DUAN X D,
et al. Van der Waals heterostructures and devices[J].
Nature, 2016, 1(9): 16042.
|
[18] |
CARR S, MASSATT D, FANG SH A,
et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle[J].
Physical Review B, 2017, 95(7): 075420.
doi:10.1103/PhysRevB.95.075420
|
[19] |
HUANG CH M, YE F W, CHEN X F,
et al. Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials[J].
Scientific reports, 2016, 6: 32546.
doi:10.1038/srep32546
|
[20] |
WANG P, ZHENG Y L, CHEN X F,
et al. Localization and delocalization of light in photonic moiré lattices[J].
Nature, 2020, 577(7788): 42-46.
doi:10.1038/s41586-019-1851-6
|
[21] |
FU Q D, WANG P, HUANG CH M,
et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices[J].
Nature Photonics, 2020, 14(11): 663-668.
doi:10.1038/s41566-020-0679-9
|
[22] |
DENG Y CH, OUDICH M, GERARD N J R K,
et al. Magic-angle bilayer phononic graphene[J].
Physical Review B, 2020, 102(18): 180304(R).
doi:10.1103/PhysRevB.102.180304
|
[23] |
GARDEZI S M, PIRIE H, DORRELL W,
et
al.. Acoustic twisted bilayer graphene[J]. arXiv: 2010.10037, 2020.
|
[24] |
LÓPEZ M R, PEÑARANDA F, CHRISTENSEN J,
et al. Flat bands in magic-angle vibrating plates[J].
Physical Review Letters, 2020, 125(21): 214301.
doi:10.1103/PhysRevLett.125.214301
|
[25] |
O’RIORDAN L J, WHITE A C, BUSCH T. Moiré superlattice structures in kicked Bose-Einstein condensates[J].
Physical Review A, 2016, 93(2): 023609.
doi:10.1103/PhysRevA.93.023609
|
[26] |
GONZÁLEZ-TUDELA A, CIRAC J I. Cold atoms in twisted-bilayer optical potentials[J].
Physical Review A, 2019, 100(5): 053604.
doi:10.1103/PhysRevA.100.053604
|
[27] |
DURELLI A J, PARKS V J.
Moiré
Analysis
of
Strain[M]. Englewood Cliffs: Prentice-Hall, 1970.
|
[28] |
TAKASAKI H. Moiré topography[J].
Applied Optics, 1970, 9(6): 1467-1472.
doi:10.1364/AO.9.001467
|
[29] |
CADARSO V J, CHOSSON S, SIDLER K,
et al. High-resolution 1D moirés as counterfeit security features[J].
Light:
Science&
Applications, 2013, 2(7): e86.
|
[30] |
KOCABAS A, SENLIK S S, AYDINLI A. Slowing down surface plasmons on a moiré surface[J].
Physical Review Letters, 2009, 102(6): 063901.
doi:10.1103/PhysRevLett.102.063901
|
[31] |
BALCI S, KARABIYIK M, KOCABAS A,
et al. Coupled plasmonic cavities on moire surfaces[J].
Plasmonics, 2010, 5(4): 429-436.
doi:10.1007/s11468-010-9161-8
|
[32] |
KARADEMIR E, BALCI S, KOCABAS C,
et al. Lasing in a slow Plasmon moiré cavity[J].
ACS Photonics, 2015, 2(7): 805-809.
doi:10.1021/acsphotonics.5b00168
|
[33] |
KHURGIN J B. Light slowing down in Moiré fiber gratings and its implications for nonlinear optics[J].
Physical Review A, 2000, 62(1): 013821.
doi:10.1103/PhysRevA.62.013821
|
[34] |
XUE R D, WANG W, WANG L Q,
et al. Localization and oscillation of optical beams in Moiré lattices[J].
Optics Express, 2017, 25(5): 5788-5796.
doi:10.1364/OE.25.005788
|
[35] |
WANG Y, LAN Y J, SONG Q,
et al. Colorful efficient Moiré-perovskite solar cells[J].
Advanced Materials, 2021, 33(15): 2008091.
doi:10.1002/adma.202008091
|
[36] |
GUO CH, GUO Y, LOU B CH,
et al. Wide wavelength-tunable narrow-band thermal radiation from moiré patterns[J].
Applied Physics Letters, 2021, 118(13): 131111.
doi:10.1063/5.0047308
|
[37] |
HUANG SH F, ZHANG H F, WU Z L,
et al. Large-area ordered P-type Si nanowire arrays as photocathode for highly efficient photoelectrochemical hydrogen generation[J].
ACS Applied Materials&
Interfaces, 2014, 6(15): 12111-12118.
|
[38] |
WU Z L, CHEN K, MENZ R,
et al. Tunable multiband metasurfaces by moiré nanosphere lithography[J].
Nanoscale, 2015, 7(48): 20391-20396.
doi:10.1039/C5NR05645D
|
[39] |
WU Z L, LI W, YOGEESH M N,
et al. Tunable graphene metasurfaces with gradient features by self-assembly-based Moiré nanosphere lithography[J].
Advanced Optical Materials, 2016, 4(12): 2035-2043.
doi:10.1002/adom.201600242
|
[40] |
HAN J H, KIM I, RYU J W,
et al. Rotationally reconfigurable metamaterials based on moiré phenomenon[J].
Optics Express, 2015, 23(13): 17443-17449.
doi:10.1364/OE.23.017443
|
[41] |
GAO Y M, WEN Z R, ZHENG L R,
et al. Complex periodic non-diffracting beams generated by superposition of two identical periodic wave fields[J].
Optics Communications, 2017, 389: 123-127.
doi:10.1016/j.optcom.2016.12.022
|
[42] |
JIN W T, SONG M, XUE Y L,
et al. Construction of photorefractive photonic quasicrystal microstructures by twisted square lattices[J].
Applied Optics, 2020, 59(22): 6638-6641.
doi:10.1364/AO.397622
|
[43] |
FLEISCHER J W, SEGEV M, EFREMIDIS N K,
et al. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices[J].
Nature, 2003, 422(6928): 147-150.
doi:10.1038/nature01452
|
[44] |
陈俞安. 五类莫尔晶格的光学特性[D]. 上海: 上海交通大学, 2020.
CHEN Y A. Optical properties of five kinds Moiré lattice[D]. Shanghai: Shanghai Jiaotong University, 2020. (in Chinese).
|
[45] |
李静. 基于复杂晶格的莫尔晶格的光学性质[D]. 上海: 上海交通大学, 2020.
LI J. Optical properties of Moiré lattice based on complex lattice[D]. Shanghai: Shanghai Jiaotong University, 2020. (in Chinese).
|
[46] |
MUKHERJEE S, SPRACKLEN A, CHOUDHURY D,
et al. Observation of a localized flat-band state in a photonic lieb lattice[J].
Physical Review Letters, 2015, 114(24): 245504.
doi:10.1103/PhysRevLett.114.245504
|
[47] |
VICENCIO R A, CANTILLANO C, MORALES-INOSTROZA L,
et al. Observation of localized states in lieb photonic lattices[J].
Physical Review Letters, 2015, 114(24): 245503.
doi:10.1103/PhysRevLett.114.245503
|
[48] |
XIA SH Q, RAMACHANDRAN A, XIA SH Q,
et al. Unconventional flatband line states in photonic lieb lattices[J].
Physical Review Letters, 2018, 121(26): 263902.
doi:10.1103/PhysRevLett.121.263902
|
[49] |
LEYKAM D, ANDREANOV A, FLACH S. Artificial flat band systems: from lattice models to experiments[J].
Advances in Physics:
X, 2018, 3(1): 1473052.
doi:10.1080/23746149.2018.1473052
|
[50] |
GÓMEZ-URREA H A, OSPINA-MEDINA M C, CORREA-ABAD J D,
et al. Tunable band structure in 2D Bravais-Moiré photonic crystal lattices[J].
Optics Communications, 2020, 459: 125081.
doi:10.1016/j.optcom.2019.125081
|
[51] |
BISTRITZER R, MACDONALD A H. Moiré bands in twisted double-layer graphene[J].
Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12233-12237.
doi:10.1073/pnas.1108174108
|
[52] |
ZHANG ZH M, WANG Y M, WATANABE K,
et al. Flat bands in twisted bilayer transition metal dichalcogenides[J].
Nature Physics, 2020, 16(11): 1093-1096.
doi:10.1038/s41567-020-0958-x
|
[53] |
UTAMA M I B, KOCH R J, LEE K,
et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist[J].
Nature Physics, 2021, 17(2): 184-188.
doi:10.1038/s41567-020-0974-x
|
[54] |
HU G W, KRASNOK A, MAZOR Y,
et al. Moiré hyperbolic metasurfaces[J].
Nano Letters, 2020, 20(5): 3217-3224.
doi:10.1021/acs.nanolett.9b05319
|
[55] |
HU G W, OU Q D, SI G Y,
et al. Topological polaritons and photonic magic angles in twisted α-MoO
3bilayers[J].
Nature, 2020, 582(7811): 209-213.
doi:10.1038/s41586-020-2359-9
|
[56] |
LOU B CH, ZHAO N, MINKOV M,
et al. Theory for twisted bilayer photonic crystal slabs[J].
Physical Review Letters, 2021, 126(13): 136101.
doi:10.1103/PhysRevLett.126.136101
|
[57] |
WANG W H, GAO W L, CHEN X D,
et al. Moiré fringe induced gauge field in photonics[J].
Physical Review Letters, 2020, 125(20): 203901.
doi:10.1103/PhysRevLett.125.203901
|
[58] |
OUDICH M, SU G X, DENG Y CH,
et
al.. Bilayer photonic graphene[J]. arXiv: 2103.03686, 2021.
|
[59] |
LIU ZH, DU ZH Y, HU B,
et al. Wide-angle Moiré metalens with continuous zooming[J].
Journal of the Optical Society of America B, 2019, 36(10): 2810-2816.
doi:10.1364/JOSAB.36.002810
|
[60] |
CHEN ZH G, SEGEV M, CHRISTODOULIDES D N. Optical spatial solitons: historical overview and recent advances[J].
Reports on Progress in Physics, 2012, 75(8): 086401.
doi:10.1088/0034-4885/75/8/086401
|
[61] |
YE F, MIHALACHE D, HU B,
et al. Subwavelength plasmonic lattice solitons in arrays of metallic nanowires[J].
Physical Review Letters, 2010, 104(10): 106802.
doi:10.1103/PhysRevLett.104.106802
|
[62] |
BAĞCI M. Soliton dynamics in quadratic nonlinear media with two-dimensional Pythagorean aperiodic lattices[J].
Journal of the Optical Society of America B, 2021, 38(4): 1276-1282.
doi:10.1364/JOSAB.416299
|
[63] |
LEI F Q, WANG CH F. Study on the properties of solitons in moiré lattice[J].
Optik, 2020, 219: 165169.
doi:10.1016/j.ijleo.2020.165169
|
[64] |
FEI Z, RODIN A S, ANDREEV G O,
et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J].
Nature, 2012, 487(7405): 82-85.
doi:10.1038/nature11253
|
[65] |
CHEN J N, BADIOLI M, ALONSO-GONZALEZ P,
et al. Optical nano-imaging of gate-tunable graphene plasmons[J].
Nature, 2012, 487(7405): 77-81.
doi:10.1038/nature11254
|
[66] |
SUNKU S S, NI G X, JIANG B Y,
et al. Photonic crystals for nano-light in moiré graphene superlattices[J].
Science, 2018, 362(6419): 1153-1156.
doi:10.1126/science.aau5144
|
[67] |
LIN X, LIU Z F, STAUBER T,
et al. Chiral plasmons with twisted atomic bilayers[J].
Physical Review Letters, 2020, 125(7): 077401.
doi:10.1103/PhysRevLett.125.077401
|
[68] |
BREY L, STAUBER T, SLIPCHENKO T,
et al. Plasmonic Dirac cone in twisted bilayer graphene[J].
Physical Review Letters, 2020, 125(25): 256804.
doi:10.1103/PhysRevLett.125.256804
|
[69] |
ZHANG X Y, ZHONG Y H, LOW T,
et al. Emerging chiral optics from chiral interfaces[J].
Physical Review B, 2021, 103(19): 195405.
doi:10.1103/PhysRevB.103.195405
|
[70] |
JIANG L L, SHI ZH W, ZENG B,
et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls[J].
Nature Materials, 2016, 15(8): 840-844.
doi:10.1038/nmat4653
|
[71] |
WU F CH, LOVORN T, MACDONALD A H. Topological exciton bands in Moiré heterojunctions[J].
Physical Review Letters, 2017, 118(14): 147401.
doi:10.1103/PhysRevLett.118.147401
|
[72] |
YU H Y, LIU G B, TANG J J,
et al. Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices[J].
Science Advances, 2017, 3(11): e1701696.
doi:10.1126/sciadv.1701696
|
[73] |
KIM C J, BROWN L, GRAHAM M W,
et al. Stacking order dependent second harmonic generation and topological defects in
h-BN bilayers[J].
Nano Letters, 2013, 13(11): 5660-5665.
doi:10.1021/nl403328s
|
[74] |
HSU W T, ZHAO Z A, LI L J,
et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers[J].
ACS Nano, 2014, 8(3): 2951-2958.
doi:10.1021/nn500228r
|
[75] |
YAO K Y, YANEV E, CHUANG H J,
et al. Continuous wave sum frequency generation and imaging of monolayer and heterobilayer two-dimensional semiconductors[J].
ACS Nano, 2020, 14(1): 708-714.
doi:10.1021/acsnano.9b07555
|
[76] |
LIU F, WU W J, BAI Y S,
et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices[J].
Science, 2020, 367(6480): 903-906.
doi:10.1126/science.aba1416
|
[77] |
YAO K Y, FINNEY N R, ZHANG J,
et
al.. Nonlinear twistoptics at symmetry-broken interfaces[J]. arXiv: 2006.13802, 2020.
|
[78] |
ZHANG L, WU F CH, HOU SH C,
et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity[J].
Nature, 2021, 591(7848): 61-65.
doi:10.1038/s41586-021-03228-5
|