Citation: | LIU Hai-feng, GUO Hong-jie, TAN Man-qing, LI Zhi-yong. Research progress of lithium niobate thin-film modulators[J].Chinese Optics, 2022, 15(1): 1-13.doi:10.37188/CO.2021-0115 |
[1] |
WOOTEN E L, KISSA K M, YI-YAN A,
et al. A review of lithium niobate modulators for fiber-optic communications systems[J].
IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(1): 69-82.
doi:10.1109/2944.826874
|
[2] |
TENG M, HONARDOOST A, ALAHMADI Y,
et al. Miniaturized silicon photonics devices for integrated optical signal processors[J].
Journal of Lightwave Technology, 2020, 38(1): 6-17.
doi:10.1109/JLT.2019.2943251
|
[3] |
SUN CH, WADE M T, LEE Y,
et al. Single-chip microprocessor that communicates directly using light[J].
Nature, 2015, 528(7583): 534-538.
doi:10.1038/nature16454
|
[4] |
OGISO Y, OZAKI J, UEDA Y,
et al. Over 67 GHz bandwidth and 1.5 V
V
πInP-based optical IQ modulator with n-i-p-n heterostructure[J].
Journal of Lightwave Technology, 2017, 35(8): 1450-1455.
doi:10.1109/JLT.2016.2639542
|
[5] |
KOEBER S, PALMER R, LAUERMANN M,
et al. Femtojoule electro-optic modulation using a silicon-organic hybrid device[J].
Light:
Science&
Applications, 2015, 4(2): e255.
|
[6] |
HAFFNER C, CHELLADURAI D, FEDORYSHYN Y,
et al. Low-loss plasmon-assisted electro-optic modulator[J].
Nature, 2018, 556(7702): 483-486.
doi:10.1038/s41586-018-0031-4
|
[7] |
GUTIERREZ A M, GALAN J V, HERRERA J,
et al. . High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications[C].
Proceedings of the 9th International Conference on Group IV Photonics (GFP),
IEEE, 2012: 57-59.
|
[8] |
陈柄言, 于永吉, 吴春婷, 等. 窄线宽1064 nm光纤 泵浦高效率中红外3.8 μm MgO: PPLN光参量振荡器[J]. 中国光学,2021,14(2):361-367.
doi:10.37188/CO.2020-0169
CHEN B Y, YU Y J, WU CH T,
et al. High efficiency mid-infrared 3.8 μm MgO: PPLN optical parametric oscillator pumped by narrow linewidth 1064 nm fiber laser[J].
Chinese Optics, 2021, 14(2): 361-367. (in Chinese)
doi:10.37188/CO.2020-0169
|
[9] |
Srico. Lithium niobate modulator[EB/OL]. [2021-08-31].https://www.srico.com/products/.
|
[10] |
Optilab. Lithium niobate modulator[EB/OL]. [2021-08-31].https://www.optilab.com/optical-modulator.
|
[11] |
EOspace. Lithium niobate modulator[EB/OL]. [2021-08-31].https://www.eospace.com/product-summary-modulator.
|
[12] |
WEIGEL P O, ZHAO J, FANG K,
et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth[J].
Optics Express, 2018, 26(18): 23728-23739.
doi:10.1364/OE.26.023728
|
[13] |
WANG X X, WEIGEL P O, ZHAO J,
et al. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate[J].
APL Photonics, 2019, 4(9): 096101.
doi:10.1063/1.5115243
|
[14] |
LI M X, LIANG H X, LUO R,
et al. High‐
Q2D lithium niobate photonic crystal slab nanoresonators[J].
Laser&
Photonics Reviews, 2019, 13(5): 1800228.
|
[15] |
LI M X, LIANG H X, LUO R,
et al. Photon-level tuning of photonic nanocavities[J].
Optica, 2019, 6(7): 860-863.
doi:10.1364/OPTICA.6.000860
|
[16] |
QIAO Q F, XIA J, LEE C,
et al. Applications of photonic crystal nanobeam cavities for sensing[J].
Micromachines, 2018, 9(11): 541.
doi:10.3390/mi9110541
|
[17] |
李天琦, 毛小洁, 雷健, 等. 固体 器与光纤 器对光子晶体光纤棒耦合的分析与对比[J]. 中国光学,2018,11(6):958-973.
doi:10.3788/co.20181106.0958
LI T Q, MAO X J, LEI J,
et al. Analysis and comparison of solid-state lasers and fiber lasers on the coupling of rod-type photonic crystal fiber[J].
Chinese Optics, 2018, 11(6): 958-973. (in Chinese)
doi:10.3788/co.20181106.0958
|
[18] |
史光辉. 半导体 耦合新方法[J]. 中国光学,2013,6(3):343-352.
SHI G H. Improved method for semiconductor laser coupling[J].
Chinese Optics, 2013, 6(3): 343-352. (in Chinese)
|
[19] |
SON G, HAN S, PARK J,
et al. High-efficiency broadband light coupling between optical fibers and photonic integrated circuits[J].
Nanophotonics, 2018, 7(12): 1845-1864.
doi:10.1515/nanoph-2018-0075
|
[20] |
HONARDOOST A, GONZALEZ G F C, KHAN S,
et al. Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates[J].
IEEE Photonics Journal, 2018, 10(3): 4500909.
|
[21] |
LI Y, LAN T, LI J,
et al. High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide[J].
Applied Optics, 2020, 59(22): 6694-6701.
doi:10.1364/AO.395897
|
[22] |
KRASNOKUTSKA I, TAMBASCO J L J, PERUZZO A. Nanostructuring of LNOI for efficient edge coupling[J].
Optics Express, 2019, 27(12): 16578-16585.
doi:10.1364/OE.27.016578
|
[23] |
LIU D N, FENG L SH, JIA Y Z,
et al. Heterogeneous integration of LN and Si
3N
4waveguides using an optical interlayer coupler[J].
Optics Communications, 2019, 436: 1-6.
doi:10.1016/j.optcom.2018.11.058
|
[24] |
HE L Y, ZHANG M, SHAMS-ANSARI A,
et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits[J].
Optics Letters, 2019, 44(9): 2314-2317.
doi:10.1364/OL.44.002314
|
[25] |
YING P, TAN H Y, ZHANG J W,
et al. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter[J].
Optics Letters, 2021, 46(6): 1478-1481.
doi:10.1364/OL.418996
|
[26] |
KRASNOKUTSKA I, CHAPMAN R J, TAMBASCO J L J,
et al. High coupling efficiency grating couplers on lithium niobate on insulator[J].
Optics Express, 2019, 27(13): 17681-17685.
doi:10.1364/OE.27.017681
|
[27] |
MAHMOUD M, CAI L T, BOTTENFIELD C,
et al. Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform[J].
IEEE Photonics Journal, 2018, 10(1): 6600410.
|
[28] |
YAO N, ZHOU J X, GAO R H,
et al. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber[J].
Optics Express, 2020, 28(8): 12416-12423.
doi:10.1364/OE.391228
|
[29] |
WANG M K, LI J H, CHEN K X,
et al. Thin-film lithium niobate electro-optic modulator on a D-shaped fiber[J].
Optics Express, 2020, 28(15): 21464-21473.
doi:10.1364/OE.396613
|
[30] |
ALFERNESS R C. Waveguide electrooptic modulators[J].
IEEE Transactions on Microwave Theory and Techniques, 1982, 30(8): 1121-1137.
doi:10.1109/TMTT.1982.1131213
|
[31] |
BINH L N. Tilted traveling wave electrodes and impacts on high-speed operation of integrated electro-optic modulators: modeling and experimental demonstration[J].
Optical Engineering, 2009, 48(9): 097005.
doi:10.1117/1.3231504
|
[32] |
YANG D C, CHEN Y K, XIANG M H,
et al. Traveling wave electrode design for a LiNbO
3integrated optical switch[J].
Proceedings of SPIE, 2019, 11334: 113341B.
|
[33] |
GEE A, JAAFAR A H, KEMP N T. Nanoscale junctions for single molecule electronics fabricated using bilayer nanoimprint lithography combined with feedback controlled electromigration[J].
Nanotechnology, 2020, 31(15): 155203.
doi:10.1088/1361-6528/ab6473
|
[34] |
AIDIL S A, NUZAIHAN M N M, ARSHAD M K,
et al. . Fabrication and characterization of poly-Si nanowire with Thin Film of Ni/Au contact pad using conventional photolithography[C].
Proceedings of 2019 IEEE International Conference on Sensors and Nanotechnology,
IEEE, 2019: 29-32.
|
[35] |
KUBOTA K, NODA J, MIKAMI O. Traveling wave optical modulator using a directional coupler LiNbO3waveguide[J].
IEEE Journal of Quantum Electronics, 1980, 16(7): 754-760.
doi:10.1109/JQE.1980.1070563
|
[36] |
LEVY M, RADOJEVIC A M. Single-crystal lithium niobate films by crystal ion slicing[M]. ALEXE M, GÖSELE U. Wafer Bonding: Applications and Technology. Berlin, Heidelberg: Springer, 2004: 417-450.
|
[37] |
RAO A, FATHPOUR S. Compact lithium niobate electrooptic modulators[J].
IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(4): 3400114.
|
[38] |
HU H, GUI L, RICKEN R,
et al. Towards nonlinear photonic wires in lithium niobate[J].
Proceedings of SPIE, 2010, 7604: 76040R.
doi:10.1117/12.842674
|
[39] |
POBERAJ G, KOECHLIN M, SULSER F,
et al. Ion-sliced lithium niobate thin films for active photonic devices[J].
Optical Materials, 2009, 31(7): 1054-1058.
doi:10.1016/j.optmat.2007.12.019
|
[40] |
TAKIGAWA R, ASANO T. Thin-film lithium niobate-on-insulator waveguides fabricated on silicon wafer by room-temperature bonding method with silicon nanoadhesive layer[J].
Optics Express, 2018, 26(19): 24413-24421.
doi:10.1364/OE.26.024413
|
[41] |
HOWLADER M M R, SUGA T, KIM M J. Room temperature bonding of silicon and lithium niobate[J].
Applied Physics Letters, 2006, 89(3): 031914.
doi:10.1063/1.2229262
|
[42] |
LEE Y S, KIM G D, KIM W J,
et al. Hybrid Si-LiNbO
3microring electro-optically tunable resonators for active photonic devices[J].
Optics Letters, 2011, 36(7): 1119-1121.
doi:10.1364/OL.36.001119
|
[43] |
ARIZMENDI L. Photonic applications of lithium niobate crystals[J].
Physica Status Solidi(
A)
|
[44] |
YU J, ZHANG CH X, LI CH SH,
et al. Influence of polarization-dependent crosstalk on scale factor in the in-line Sagnac interferometer current sensor[J].
Optical Engineering, 2013, 52(11): 117101.
doi:10.1117/1.OE.52.11.117101
|
[45] |
PAZ‐PUJALT G R, TUSCHEL D D, BRAUNSTEIN G,
et al. Characterization of proton exchange lithium niobate waveguides[J].
Journal of Applied Physics, 1994, 76(7): 3981-3987.
doi:10.1063/1.358495
|
[46] |
PALIWAL A, SHARMA A, GUO R Y,
et al. Electro-optic (EO) effect in proton-exchanged lithium niobate: towards EO modulator[J].
Applied Physics B, 2019, 125(7): 115.
doi:10.1007/s00340-019-7227-7
|
[47] |
HAN H P, XIANG B X, LIN T,
et al. Design and optimization of proton exchanged integrated electro-optic modulators in X-Cut lithium niobate thin film[J].
Crystals, 2019, 9(11): 549.
doi:10.3390/cryst9110549
|
[48] |
ULLIAC G, GUICHARDAZ B, RAUCH J Y,
et al. Ultra-smooth LiNbO
3micro and nano structures for photonic applications[J].
Microelectronic Engineering, 2011, 88(8): 2417-2419.
doi:10.1016/j.mee.2011.02.024
|
[49] |
WANG CH, ZHANG M, STERN B,
et al. Nanophotonic lithium niobate electro-optic modulators[J].
Optics Express, 2018, 26(2): 1547-1555.
doi:10.1364/OE.26.001547
|
[50] |
KRASNOKUTSKA I, TAMBASCO J L J, LI X J,
et al. Ultra-low loss photonic circuits in lithium niobate on insulator[J].
Optics Express, 2018, 26(2): 897-904.
doi:10.1364/OE.26.000897
|
[51] |
WANG J, BO F, WAN SH,
et al. High-
Qlithium niobate microdisk resonators on a chip for efficient electro-optic modulation[J].
Optics Express, 2015, 23(18): 23072-23078.
doi:10.1364/OE.23.023072
|
[52] |
WANG M, WU R B, LIN J T,
et al. Chemo‐mechanical polish lithography: a pathway to low loss large‐scale photonic integration on lithium niobate on insulator[J].
Quantum Engineering, 2019, 1(1): e9.
doi:10.1002/que2.9
|
[53] |
ZHANG J H, FANG ZH W, LIN J T,
et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J].
Nanomaterials(
Basel)
|
[54] |
HU H, RICKEN R, SOHLER W,
et al. Lithium niobate ridge waveguides fabricated by wet etching[J].
IEEE Photonics Technology Letters, 2007, 19(6): 417-419.
doi:10.1109/LPT.2007.892886
|
[55] |
ULLIAC G, CALERO V, NDAO A,
et al. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application[J].
Optical Materials, 2016, 53: 1-5.
doi:10.1016/j.optmat.2015.12.040
|
[56] |
张琨, 岳远斌, 李彤, 等. 感应耦合等离子体刻蚀在聚合物光波导制作中的应用[J]. 中国光学,2012,5(1):64-70.
doi:10.3969/j.issn.2095-1531.2012.01.010
ZHANG K, YUE Y B, LI T,
et al. Application of ICP etching in fabrication of polymer optical waveguide[J].
Chinese Optics, 2012, 5(1): 64-70. (in Chinese)
doi:10.3969/j.issn.2095-1531.2012.01.010
|
[57] |
WANG CH, ZHANG M, CHEN X,
et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J].
Nature, 2018, 562(7725): 101-104.
doi:10.1038/s41586-018-0551-y
|
[58] |
WU R B, WANG M, XU J,
et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J].
Nanomaterials(
Basel)
|
[59] |
LIN J T, XU Y X, FANG Z W,
et al. Fabrication of high-
Qlithium niobate microresonators using femtosecond laser micromachining[J].
Scientific Reports, 2015, 5(1): 8072.
|
[60] |
RÜTER C E, SUNTSOV S, KIP D,
et al. Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates[J].
Proceedings of SPIE, 2014, 8982: 89821G.
|
[61] |
VOLK M F, SUNTSOV S, RÜTER C E,
et al. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing[J].
Optics Express, 2016, 24(2): 1386-1391.
doi:10.1364/OE.24.001386
|
[62] |
AHMED A N R, NELAN S, SHI SH Y,
et al. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform[J].
Optics Letters, 2020, 45(5): 1112-1115.
doi:10.1364/OL.381892
|
[63] |
SOLER M, SCHOLTZ A, ZETO R,
et al. Engineering photonics solutions for COVID-19[J].
APL Photonics, 2020, 5(9): 090901.
doi:10.1063/5.0021270
|
[64] |
HONARDOOST A, JUNEGHANI F A, SAFIAN R,
et al. Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators[J].
Optics Express, 2019, 27(5): 6495-6501.
doi:10.1364/OE.27.006495
|
[65] |
AHMED A N R, SHI SH Y, MERCANTE A J,
et al. High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform[J].
Optics Express, 2019, 27(21): 30741-30751.
doi:10.1364/OE.27.030741
|
[66] |
JIN T N, ZHOU J CH, LIN P T. Mid-infrared electro-optical modulation using monolithically integrated titanium dioxide on lithium niobate optical waveguides[J].
Scientific Reports, 2019, 9(1): 15130.
doi:10.1038/s41598-019-51563-5
|
[67] |
RABIEI P, MA J CH, KHAN S,
et al. Heterogeneous lithium niobate photonics on silicon substrates[J].
Optics Express, 2013, 21(21): 25573-25581.
doi:10.1364/OE.21.025573
|
[68] |
RAO A, PATIL A, CHILES J,
et al. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon[J].
Optics Express, 2015, 23(17): 22746-22752.
doi:10.1364/OE.23.022746
|
[69] |
LI SH, CAI L T, WANG Y W,
et al. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe[J].
Optics Express, 2015, 23(19): 24212-24219.
doi:10.1364/OE.23.024212
|
[70] |
LIU Y, LI H, LIU J,
et al. Low
V
πthin-film lithium niobate modulator fabricated with photolithography[J].
Optics Express, 2021, 29(5): 6320-6329.
doi:10.1364/OE.414250
|
[71] |
AHMED A N R, SHI SH Y, MERCANTE A,
et al. High-efficiency lithium niobate modulator for
Kband operation[J].
APL Photonics, 2020, 5(9): 091302.
doi:10.1063/5.0020040
|
[72] |
XU M Y, HE M B, ZHANG H G,
et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J].
Nature Communications, 2020, 11(1): 3911.
doi:10.1038/s41467-020-17806-0
|
[73] |
HAN H P, XIANG B X. Integrated electro-optic modulators in
x-cut lithium niobate thin film[J].
Optik, 2020, 212: 164691.
doi:10.1016/j.ijleo.2020.164691
|
[74] |
DESIATOV B, SHAMS-ANSARI A, ZHANG M,
et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate[J].
Optica, 2019, 6(3): 380-384.
doi:10.1364/OPTICA.6.000380
|
[75] |
HE M B, XU M Y, REN Y X,
et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s
−1and beyond[J].
Nature Photonics, 2019, 13(5): 359-364.
doi:10.1038/s41566-019-0378-6
|
[76] |
XU M Y, CHEN W J, HE M B,
et al. Michelson interferometer modulator based on hybrid silicon and lithium niobate platform[J].
APL Photonics, 2019, 4(10): 100802.
doi:10.1063/1.5115136
|
[77] |
JIAN J, XU M Y, LIU L,
et al. High modulation efficiency lithium niobate Michelson interferometer modulator[J].
Optics Express, 2019, 27(13): 18731-18739.
doi:10.1364/OE.27.018731
|
[78] |
CAI L T, KANG Y, HU H. Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film[J].
Optics Express, 2016, 24(5): 4640-4647.
doi:10.1364/OE.24.004640
|
[79] |
LI M X, LING J W, HE Y,
et al. Lithium niobate photonic-crystal electro-optic modulator[J].
Nature Communications, 2020, 11(1): 4123.
doi:10.1038/s41467-020-17950-7
|
[80] |
BAHADORI M, YANG Y S, HASSANIEN A E,
et al. Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform[J].
Optics Express, 2020, 28(20): 29644-29661.
doi:10.1364/OE.400413
|
[81] |
KRASNOKUTSKA I, TAMBASCO J L J, PERUZZO A. Tunable large free spectral range microring resonators in lithium niobate on insulator[J].
Scientific Reports, 2019, 9(1): 11086.
doi:10.1038/s41598-019-47231-3
|
[82] |
JIN SH L, XU L T, ZHANG H H,
et al. LiNbO
3Thin-film modulators using silicon nitride surface ridge waveguides[J].
IEEE Photonics Technology Letters, 2016, 28(7): 736-739.
doi:10.1109/LPT.2015.2507136
|
[83] |
REN T H, ZHANG M, WANG CH,
et al. An integrated low-voltage broadband lithium niobate phase modulator[J].
IEEE Photonics Technology Letters, 2019, 31(11): 889-892.
doi:10.1109/LPT.2019.2911876
|