Volume 15Issue 2
Mar. 2022
Turn off MathJax
Article Contents
HUO Ting-ting, ZHANG Dong-dong, SHI Xiang-lei, PAN Yu, SUN Li-jie, SU Yan-jie. High-performance self-powered photodetectors based on the carbon nanomaterial/GaAs vdW heterojunctions[J]. Chinese Optics, 2022, 15(2): 373-386. doi: 10.37188/CO.2021-0149
Citation: HUO Ting-ting, ZHANG Dong-dong, SHI Xiang-lei, PAN Yu, SUN Li-jie, SU Yan-jie. High-performance self-powered photodetectors based on the carbon nanomaterial/GaAs vdW heterojunctions[J].Chinese Optics, 2022, 15(2): 373-386.doi:10.37188/CO.2021-0149

High-performance self-powered photodetectors based on the carbon nanomaterial/GaAs vdW heterojunctions

doi:10.37188/CO.2021-0149
Funds:Supported by National Natural Science Foundation of China (No. 61974089); Shanghai Natural Science Foundation (No. 19ZR1426900).
More Information
  • Author Bio:

    Huo Tingting (1996—), female, from Yuncheng, Shanxi Province, master degree, graduated from Nanchang University with a bachelor degree in 2018, and obtained a master degree from Shanghai Jiaotong University in 2021, mainly engaged in the research of optoelectronic devices, van der Waals heterojunction and other fields. Email: huotingitng@sjtu.edu.cn

    Sun Lijie (1983—), male, born in Xinxiang, Henan Province, Ph.D., researcher, obtained his Ph.D. from University of Science and Technology of China in 2010, and is currently the chief researcher of the State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power, mainly engaged in the research of GaAs solar cells, new optoelectronic devices, etc. E-mail: sunlijielu@163.com

    Su Yanjie (1982—), male, from Shangqiu, Henan Province, Ph.D., associate researcher/doctoral supervisor, obtained his Ph.D. from Shanghai Jiaotong University in 2012, and is currently working in the Department of Micro-Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, mainly engaged in the research of nanomaterials and devices. E-mail: yanjiesu@sjtu.edu.cn

  • Corresponding author:sunlijielu@163.com;yanjiesu@sjtu.edu.cn
  • Received Date:23 Jul 2021
  • Rev Recd Date:26 Aug 2021
  • Accepted Date:20 Oct 2021
  • Available Online:20 Oct 2021
  • Publish Date:21 Mar 2022
  • With the advantages such as simple structure, simple process and easy interface control, the photoelectric devices based on carbon nanomaterial/bulk semiconductor van der Waals (vdW) heterojunctions can fully realize the ultrahigh carrier mobility of carbon nanomaterials and the excellent photoelectric properties of bulk semiconductors. Especially, the novel mixed-dimensional vdW heterojunctions can be prepared by controlling the diameter/chirality and Fermi level of single-walled carbon nanotubes (SWCNTs) to form atomic-level interfaces and match bandgaps with bulk semiconductors. Here, we reported a self-powered broadband photodetector based on the pn vdW heterojunctions by combining (6, 5)-enriched semiconducting SWCNT film with n-type GaAs, and used graphene to reduce the probability of carrier recombination in SWCNT film and to promote the carrier transport. The experimental results suggest that the self-powered device exhibits high-sensitivity photoelectric response toward the incident photons in the 405~1064 nm range, and that the max photoelectric responsivity of 1.214 A/W and the specific detectivity of 2 × 10 12Jones could be achieved at zero bias.

  • loading
  • [1]
    CAI B F, YIN H, HUO T T, et al. Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors[J]. Journal of Materials Chemistry C, 2020, 8(10): 3386-3394. doi:10.1039/C9TC06586E
    [2]
    LEI T, POCHOROVSKI I, BAO ZH N. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method[J]. Accounts of Chemical Research, 2017, 50(4): 1096-1104. doi:10.1021/acs.accounts.7b00062
    [3]
    ZHANG J, LIU S Y, NSHIMIYIMANA J P, et al. Observation of van Hove singularities and temperature dependence of electrical characteristics in suspended carbon nanotube Schottky barrier transistors[J]. Nano-Micro Letters, 2018, 10(2): 25. doi:10.1007/s40820-017-0171-3
    [4]
    CAI B F, SU Y J, TAO Z J, et al. Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets[J]. Advanced Optical Materials, 2018, 6(23): 1800791. doi:10.1002/adom.201800791
    [5]
    YANG L J, WANG SH, ZENG Q SH, et al..Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection[J]. Small, 2013, 9(8): 1225-1236.
    [6]
    HE X W, LÉONARD F, KONO J. Uncooled carbon nanotube photodetectors[J]. Advanced Optical Materials, 2015, 3(8): 989-1011. doi:10.1002/adom.201500237
    [7]
    MA Z, HAN J, YAO SH, et al. Improving the performance and uniformity of carbon-nanotube-network-based photodiodes via yttrium oxide coating and decoating[J]. ACS Applied Materials& Interfaces, 2019, 11(12): 11736-11742.
    [8]
    LIU Y, WEI N, ZENG Q SH, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Advanced Optical Materials, 2016, 4(2): 238-245. doi:10.1002/adom.201500529
    [9]
    TUNE D D, FLAVEL B S. Advances in carbon nanotube-silicon heterojunction solar cells[J]. Advanced Energy Materials, 2018, 8(15): 1703241. doi:10.1002/aenm.201703241
    [10]
    ZHOU H X, YANG M, JI CH H, et al. Excellent-performance C 60/graphene/SWCNT heterojunction with light-controlled enhancement of photocurrent[J]. ACS Sustainable Chemistry& Engineering, 2020, 8(10): 4276-4283.
    [11]
    GONG Y P, ADHIKARI P, LIU Q F, et al. Designing the interface of carbon nanotube/biomaterials for high-performance ultra-broadband photodetection[J]. ACS Applied Materials& Interfaces, 2017, 9(12): 11016-11024.
    [12]
    LI G H, SUJA M, CHEN M G, et al. Visible-blind UV photodetector based on single-walled carbon nanotube thin film/ZnO vertical heterostructures[J]. ACS Applied Materials& Interfaces, 2017, 9(42): 37094-37104.
    [13]
    SCAGLIOTTI M, SALVATO M, DE CRESCENZI M, et al. Influence of the contact geometry on single-walled carbon nanotube/Si photodetector response[J]. Applied Nanoscience, 2018, 8(5): 1053-1058. doi:10.1007/s13204-018-0720-1
    [14]
    CHEN J X, OUYANG W X, YANG W, et al. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications[J]. Advanced Functional Materials, 2020, 30(16): 1909909. doi:10.1002/adfm.201909909
    [15]
    PERIYANAGOUNDER D, WEI T C, LI T Y, et al. Fast-response, highly air-stable, and water-resistant organic photodetectors based on a single-crystal Pt complex[J]. Advanced Materials, 2020, 32(2): 1904634. doi:10.1002/adma.201904634
    [16]
    YANG W, CHEN J X, ZHANG Y, et al. Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology[J]. Advanced Functional Materials, 2019, 29(18): 1808182. doi:10.1002/adfm.201808182
    [17]
    SALVATO M, SCAGLIOTTI M, DE CRESCENZI M, et al. Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors[J]. Nanotechnology, 2017, 28(43): 435201. doi:10.1088/1361-6528/aa8797
    [18]
    KIM Y L, JUNG H Y, PARK S, et al. Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics[J]. Nature Photonics, 2014, 8(3): 239-243. doi:10.1038/nphoton.2014.1
    [19]
    REN ZH H, ZHONG M Z, YANG J H, et al. A polarization-sensitive photodetector based on a AsP/MoS 2heterojunction[J]. Chinese Optics, 2021, 14(1): 135-144. (in Chinese) doi:10.37188/CO.2020-0189
    [20]
    CHEN H Y, WANG Y F, YAN J, et al. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction[J]. Chinese Optics, 2019, 12(5): 1057-1063. (in Chinese) doi:10.3788/co.20191205.1057
    [21]
    LIANG CH W, ROTH S. Electrical and optical transport of GaAs/carbon nanotube heterojunctions[J]. Nano Letters, 2008, 8(7): 1809-1812. doi:10.1021/nl0802178
    [22]
    LI H, LOKE W K, ZHANG Q, et al. Physical device modeling of carbon nanotube/GaAs photovoltaic cells[J]. Applied Physics Letters, 2010, 96(4): 043501. doi:10.1063/1.3293452
    [23]
    BEHNAM A, JOHNSON J, CHOI Y, et al. Metal-semiconductor-metal photodetectors based on single-walled carbon nanotube film–GaAs Schottky contacts[J]. Journal of Applied Physics, 2008, 103(11): 114315. doi:10.1063/1.2938037
    [24]
    HUO T T, YIN H, ZHOU D Y, et al. Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions[J]. ACS Sustainable Chemistry& Engineering, 2020, 8(41): 15532-15539.
    [25]
    TAO Z J, HUO T T, YIN H, et al. Self-powered near-infrared photodetector based on single-walled carbon nanotube/graphene/GaAs double heterojunctions[J]. Semiconductor Optoelectronics, 2020, 41(2): 164-168,172. (in Chinese)
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views(1307) PDF downloads(139) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map