Volume 15Issue 2
Mar. 2022
Turn off MathJax
Article Contents
HUANG Hai-bi, LIU Wen-jie, SUN Yue-hui, WANG An-bang, QIN Yu-wen, WANG Yun-cai. Photonics generation of broadband millimeter wave noise signals with high excess noise ratios[J]. Chinese Optics, 2022, 15(2): 251-258. doi: 10.37188/CO.2021-0158
Citation: HUANG Hai-bi, LIU Wen-jie, SUN Yue-hui, WANG An-bang, QIN Yu-wen, WANG Yun-cai. Photonics generation of broadband millimeter wave noise signals with high excess noise ratios[J].Chinese Optics, 2022, 15(2): 251-258.doi:10.37188/CO.2021-0158

Photonics generation of broadband millimeter wave noise signals with high excess noise ratios

doi:10.37188/CO.2021-0158
Funds:Supported by the national natural science foundation of China (No. 61927811, No. 61961136002, No. 61731014); the Introduction of Innovation and Entrepreneurship Team Project of Guangdong Province
More Information
  • Corresponding author:wangyc@gdut.edu.cn
  • Received Date:13 Aug 2021
  • Rev Recd Date:01 Sep 2021
  • Accepted Date:10 Dec 2021
  • Available Online:17 Dec 2021
  • Publish Date:21 Mar 2022
  • The Excess Noise Ratio (ENR) of traditional noise sources is usually less than 20 dB due to the limitation of the working frequency and the power of electronic devices. To solve the problem, we propose a technology to generate a millimeter-wave noise source with a high ENR by two incoherent light beams beating. First, two optical filters are used to filter and shape the broadband amplified spontaneous emission light source. Then, the two obtained beams of amplified spontaneous radiation light with different frequencies are coupled to the photodetector for the beat frequency, which can generate electrical noise signals. A theoretical analysis predicts that a noise source with an ENR larger than 50 dB can be obtained by adjusting the optical spectral, linewidth and optical power of the two incoherent light beams filtered from an amplified spontaneous emission source under the current level of photodetector responsivity. A proof-of-concept experiment achieved a millimeter-wave noise source with an ENR higher than 50 dB. This method could also generate millimeter-wave and even terahertz-wave noise with a high ENR if a higher-speed photodetector was used.

  • loading
  • [1]
    王璐钰, 李玉琼, 蔡榕. 空间 干涉仪光程倾斜耦合噪声抑制[J]. 光学精密工程,2021,29(7):1491-1498.

    WANG L Y, LI Y Q, CAI R. Optical path slanting coupling noise suppression in space laser interferometer[J]. Optics and Precision Engineering, 2021, 29(7): 1491-1498. (in Chinese)
    [2]
    李乐, 汪龙祺, 黄煜, 等. 光电探测系统噪声特性研究与降噪设计[J]. 光学精密工程,2020,28(12):2674-2683.

    LI L, WANG L Q, HUANG Y, et al. Research on noise characteristics and noise reduction design of photoelectric detection system[J]. Optics and Precision Engineering, 2020, 28(12): 2674-2683. (in Chinese)
    [3]
    赵九龙, 马瑜, 李爽, 等. 三维医学图像的混合噪声去除方法[J]. 液晶与显示,2015,30(2):340-346.

    ZHAO J L, MA Y, LI S. et al. Hybrid Noise Removal method for 3D medical image[J]. Liquid crystal and Display, 2015, 30(2): 340-346. (in Chinese)
    [4]
    HSIAO H F, TU C H, CHANG D C, et al.. Noise figure verification using cold-Source and Y-factor technique for amplifier and down-converted mixer[C]. 2014 Asia-Pacific Microwave Conference, IEEE, 2014: 901-903.
    [5]
    PARASHARE C R, KANGASLAHTI P P, BROWN S T, et al. . Noise sources for internal calibration of millimeter-wave radiometers[C]. 2014 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), IEEE, 2014: 157-160.
    [6]
    SHAHRIAR C, PAN M L, LICHTMAN M, et al. PHY-layer resiliency in OFDM communications: a tutorial[J]. IEEE Communications Surveys& Tutorials, 2015, 17(1): 292-314.
    [7]
    PAIK H, SASTRY N N, SANTIPRABHA I. Effectiveness of noise jamming with White Gaussian Noise and phase noise in amplitude comparison monopulse radar receivers[C]. 2014 IEEE International Conference on Electronics, IEEE, 2014: 1-5.
    [8]
    余恒炜, 黎大兵, 孙晓娟, 等. 量子随机数高斯噪声信号发生器[J]. 光学精密工程,2019,27(7):1492-1499.

    YU H W, LI D B, SUN X J, et al. Quantum Random number Gaussian Noise signal generator[J]. Optics and Precision Engineering, 2019, 27(7): 1492-1499. (in Chinese)
    [9]
    BELAND P, LABONTE S, ROY L, et al. A novel on-wafer resistive noise source[J]. IEEE Microwave and Guided Wave Letters, 1999, 9(6): 227-229. doi:10.1109/75.769529
    [10]
    梁伟军, 高秋来. WR28低温标准噪声源[J]. 科学技术与工程,2011,11(31):7672-7676,7681. doi:10.3969/j.issn.1671-1815.2011.31.018

    LIANG W J, GAO Q L. A WR28 cryogenic standard noise source[J]. Science Technology and Engineering, 2011, 11(31): 7672-7676,7681. (in Chinese) doi:10.3969/j.issn.1671-1815.2011.31.018
    [11]
    PAWAR N Y, GANGAL S A, SHALIGRAM A D, et al. Development of X-band microwave noise source using neon gas fluorescent gas discharge tube[J]. AIP Conference Proceedings, 2021, 2335(1): 050002.
    [12]
    曹逸庭. 3mm肖特基势垒二极管雪崩噪声源[J]. 红外与毫米波学报,1990,9(4):317-320.

    CAO Y T. Avalanche noise source of Schottky barrier diode in the 3 mm band[J]. Journal of Infrared and Millimeter Waves, 1990, 9(4): 317-320. (in Chinese)
    [13]
    GHANEM H, GONÇALVES J C A, CHEVALIER P, et al. Modeling and analysis of a broadband schottky diode noise source up to 325 GHz based on 55-nm SiGe BiCMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(6): 2268-2277. doi:10.1109/TMTT.2020.2980513
    [14]
    刘玉栋, 杜磊, 孙鹏, 等. 静电放电对功率肖特基二极管 I- V及低频噪声特性的影响[J]. 物理学报,2012,61(13):137203. doi:10.7498/aps.61.137203

    LIU Y D, DU L, SUN P, et al. The effect of electrostatic discharge on the I- Vand low frequency noise characterization of Schottky barrier diodes[J]. Acta Physica Sinica, 2012, 61(13): 137203. (in Chinese) doi:10.7498/aps.61.137203
    [15]
    HUGGARD P G, AZCONA L, ELLISON B N, et al.. Application of 1.55 µm photomixers as local oscillators & noise sources at millimetre wavelengths[C]. Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, IEEE, 2004: 771-772.
    [16]
    SONG H J, SHIMIZU N, KUKUTSU N, et al. Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterization[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2989-2997. doi:10.1109/TMTT.2008.2007325
    [17]
    ZHAO R K, YAO T M, DUAN X D, et al.. Design of a 0.1~18GHz high-power broadband noise source[C]. 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), IEEE, 2020: 1-3.
    [18]
    EHSAN N, PIEPMEIER J, SOLLY M, et al.. A robust waveguide millimeter-wave noise source[C]. 2015 European Microwave Conference (EuMC), IEEE, 2015: 853-856.
    [19]
    GONCALVES J C A, QUEMERAIS T, GLORIA D, et al.. A 130 to 170 GHz integrated noise source based on avalanche silicon Schottky diode in BiCMOS 55 nm for in-situ noise characterization[C]. 2017 International Conference of Microelectronic Test Structures (ICMTS), IEEE, 2017: 1-3.
    [20]
    GONÇALVES J C A, GHANEM H, BOUVOT S, et al. Millimeter-wave noise source development on SiGe BiCMOS 55-nm technology for applications up to 260 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(9): 3732-3742. doi:10.1109/TMTT.2019.2926289
    [21]
    ALIMENTI F, SIMONCINI G, BROZZETTI G, et al. Millimeter-wave avalanche noise sources based on p-i-n diodes in 130 nm SiGe BiCMOS technology: device characterization and CAD modeling[J]. IEEE Access, 2020, 8: 178976-178990. doi:10.1109/ACCESS.2020.3027384
    [22]
    COEN C T, FROUNCHI M, LOURENCO N E, et al. A 60-GHz SiGe radiometer calibration switch utilizing a coupled avalanche noise source[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(4): 417-420. doi:10.1109/LMWC.2020.2975735
    [23]
    VIDAL B. Broadband photonic microwave noise sources[J]. IEEE Photonics Technology Letters, 2020, 32(10): 592-594. doi:10.1109/LPT.2020.2986739
    [24]
    CHAO E F, XIONG B, SUN CH ZH, et al.. Comprehensive design method of MUTC-PD for terahertz applications[C]. 2020 Asia Communications and Photonics Conference(ACP) and International Conference on Information Photonics and Optical Communications (IPOC). IEEE, 2020: 1-3.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(684) PDF downloads(107) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map