Volume 15Issue 2
Mar. 2022
Turn off MathJax
Article Contents
FENG Qin-yin, QIU Guo-hua, YAN De-xian, Li Ji-ning, Li Xiang-jun. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide[J]. Chinese Optics, 2022, 15(2): 387-403. doi: 10.37188/CO.2021-0174
Citation: FENG Qin-yin, QIU Guo-hua, YAN De-xian, Li Ji-ning, Li Xiang-jun. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide[J].Chinese Optics, 2022, 15(2): 387-403.doi:10.37188/CO.2021-0174

Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide

doi:10.37188/CO.2021-0174
Funds:Supported by the National Natural Science Foundation of China (Grant No. 62001444, No. 61871355, No. 61831012); Natural Science Foundation Zhejiang Province (Grant No. LQ20F010009, No. LY18F010016); Basic Public Welfare Research Project of Zhejiang Province (Grant No. LGF19F010003)
More Information
  • Author Bio:

    FENG Qin-yin (1997—), Female, from Shaoyang, Hunan Province, China, M.S. student, mainly engaged in research on terahertz metamaterials. E-mail:1162935753@qq.com

    QIU Guo-hua (1974—), Male, from Shaoxing, Zhejiang Province, China, Ph. D., Lecturer, received his Ph.D. degree from Zhejiang University in 2012, mainly engaged in the research of terahertz sources and devices, Email:qghfr@163.com

    YAN De-xian (1991—), Male, from Wuwei, Gansu Province, China, Ph. D., associate professor, received his Ph.D. degree from Tianjin University in 2018, mainly engaged in the research of terahertz sources and devices. E-mail:yandexian1991@cjlu.edu.cn

  • Corresponding author:qghfr@163.com;yandexian1991@cjlu.edu.cn
  • Received Date:25 Sep 2021
  • Rev Recd Date:21 Oct 2021
  • Available Online:08 Jan 2022
  • Publish Date:21 Mar 2022
  • A wide-band and narrow-band switchable bi-functional metamaterial absorber is presented in this paper. The phase change material vanadium dioxide (VO 2) is introduced in the structure of the metamaterial absorber, and different functions can be achieved by using only a single switchable metasurface. The mutual conversion of different functions is realized by the reversible phase transition between the VO 2insulating state and the metal state. When VO 2is in metallic state, the designed structure can be regarded as a metamaterial wide-band absorber. The simulation results show that the absorption is over 98% in the frequency range of 1.55 THz to 2.21 THz. When VO 2is in the insulating state, the structure acts as a narrow-band absorber, and the absorption at resonance frequencies of 2.54, 2.93 and 3.34 THz is over 95%. In addition, the effect of geometric parameters on the absorption of metamaterial absorber is discussed. Because of the symmetry of the element structure, the absorber is insensitive to the polarization when the electromagnetic wave is vertically incident, and it can keep good absorption performance with the large incident angle. Therefore, the switchable bi-functional metamaterial absorber proposed in this paper can be widely used in terahertz modulation, thermal emitters and electromagnetic energy acquisition, etc.

  • loading
  • [1]
    BAO D, SHEN X P, CUI T J. Progress of terahertz metamaterials[J]. Acta Physica Sinica, 2015, 64(22): 228701. (in Chinese) doi:10.7498/aps.64.228701
    [2]
    SONG ZH Y, WEI M L, WANG ZH SH. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces[J]. IEEE Photonics Journal, 2019, 11(2): 4600607.
    [3]
    XU R J, LIU X Y, LIN Y SH. Tunable ultra-narrowband terahertz perfect absorber by using metal-insulator-metal microstructures[J]. Results in Physics, 2019, 13: 102176. doi:10.1016/j.rinp.2019.102176
    [4]
    CHEN L, LIAO D G, GUO X G, et al. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review[J]. Frontiers of Information Technology& Electronic Engineering, 2019, 20(5): 591-607.
    [5]
    LI CH Y, CHANG C C, ZHOU Q L, et al. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs[J]. Optics Express, 2017, 25(21): 25842-25852. doi:10.1364/OE.25.025842
    [6]
    LEE Y, KIM S J, PARK H, et al. Metamaterials and metasurfaces for sensor applications[J]. Sensors, 2017, 17(8): 1726. doi:10.3390/s17081726
    [7]
    LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi:10.1103/PhysRevLett.100.207402
    [8]
    SHAN Y, CHEN L, SHI CH, et al. Ultrathin flexible dual band terahertz absorber[J]. Optics Communications, 2015, 350: 63-70. doi:10.1016/j.optcom.2015.03.072
    [9]
    WEN Q Y, ZHANG H W, XIE Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J]. Applied Physics Letters, 2009, 95(24): 241111. doi:10.1063/1.3276072
    [10]
    BAO ZH Y, WANG J CH, HU ZH D, et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express, 2019, 27(22): 31435-31445. doi:10.1364/OE.27.031435
    [11]
    FANG X M, JIANG X W, WU H. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. (in Chinese) doi:10.37188/CO.2021-0075
    [12]
    ZHANG Y B, LIU W W, LI ZH CH, et al. Ultrathin polarization-insensitive wide-angle broadband near-perfect absorber in the visible regime based on few-layer MoS 2films[J]. Applied Physics Letters, 2017, 111(11): 111109. doi:10.1063/1.4992045
    [13]
    CHEN SH Q, CHENG H, YANG H F, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime[J]. Applied Physics Letters, 2011, 99(25): 253104. doi:10.1063/1.3670333
    [14]
    KONG H, LI G F, JIN Z M, et al. Polarization-independent metamaterial absorber for terahertz frequency[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(6): 649-656. doi:10.1007/s10762-012-9906-x
    [15]
    RYZHII V, OTSUJI T, RYZHII M, et al. Graphene terahertz uncooled bolometers[J]. Journal of Physics D: Applied Physics, 2013, 46(6): 065102. doi:10.1088/0022-3727/46/6/065102
    [16]
    SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi:10.1126/science.1133628
    [17]
    WANG Y, CUI Z J, ZHU D Y, et al. Multiband terahertz absorber and selective sensing performance[J]. Optics Express, 2019, 27(10): 14133-14143. doi:10.1364/OE.27.014133
    [18]
    ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese)
    [19]
    REN ZH H, ZHONG M Z, YANG J H, et al. A polarization-sensitive photodetector based on a AsP/MoS 2heterojunction[J]. Chinese Optics, 2021, 14(1): 135-144. (in Chinese) doi:10.37188/CO.2020-0189
    [20]
    YUAN Y H, CHEN X Y, HU F R, et al. Terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure[J]. Chinese Journal of Lasers, 2019, 46(6): 0614016. (in Chinese) doi:10.3788/CJL201946.0614016
    [21]
    WEIS P, GARCIA-POMAR J L, RAHM M. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene[J]. Optics Express, 2014, 22(7): 8473-8489. doi:10.1364/OE.22.008473
    [22]
    WU Y, RUAN X ZH, CHEN C H, et al. Graphene/liquid crystal based terahertz phase shifters[J]. Optics Express, 2013, 21(18): 21395-21402. doi:10.1364/OE.21.021395
    [23]
    LIU H, WANG ZH H, LI L, et al. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber[J]. Scientific Reports, 2019, 9(1): 5751. doi:10.1038/s41598-019-42293-9
    [24]
    HU F R, WANG H, ZHANG X W, et al. Electrically triggered tunable terahertz band-pass filter based on VO 2hybrid metamaterial[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3): 4700207.
    [25]
    QAZILBASH M M, BREHM M, CHAE B G, et al. Mott transition in VO 2revealed by infrared spectroscopy and nano-imaging[J]. Science, 2007, 318(5857): 1750-1753. doi:10.1126/science.1150124
    [26]
    HALLMAN K A, MILLER K J, BAYDIN A, et al. Sub-picosecond response time of a hybrid VO 2: silicon waveguide at 1550 nm[J]. Advanced Optical Materials, 2021, 9(4): 2001721. doi:10.1002/adom.202001721
    [27]
    YAN D X, MENG M, LI J SH, et al. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave[J]. Optics Express, 2020, 28(20): 29843-29854. doi:10.1364/OE.404829
    [28]
    SONG ZH Y, CHEN A P, ZHANG J H. Terahertz switching between broadband absorption and narrowband absorption[J]. Optics Express, 2020, 28(2): 2037-2044. doi:10.1364/OE.376085
    [29]
    ZHANG M, SONG ZH Y. Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration[J]. Optics Express, 2020, 28(8): 11780-11788. doi:10.1364/OE.391891
    [30]
    HUANG J, LI J N, YANG Y, et al. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces[J]. Optics Express, 2020, 28(12): 17832-17840. doi:10.1364/OE.394359
    [31]
    SONG ZH Y, ZHANG J H. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies[J]. Optics Express, 2020, 28(8): 12487-12497. doi:10.1364/OE.391066
    [32]
    LIU W W, SONG ZH Y. Terahertz absorption modulator with largely tunable bandwidth and intensity[J]. Carbon, 2021, 174: 617-624. doi:10.1016/j.carbon.2020.12.001
    [33]
    CHU Q H, YANG M SH, CHEN J, et al. Characteristics of tunable Terahertz multi-band absorber[J]. Chinese Journal of Lasers, 2019, 46(12): 1214003. (in Chinese) doi:10.3788/CJL201946.1214003
    [34]
    ZHANG CH Y, ZHANG H, LING F, et al. Dual-regulated broadband terahertz absorber based on vanadium dioxide and graphene[J]. Applied Optics, 2021, 60(16): 4835-4840. doi:10.1364/AO.426396
    [35]
    ZHOU R H, JIANG T T, PENG ZH, et al. Tunable broadband terahertz absorber based on graphene metamaterials and VO 2[J]. Optical Materials, 2021, 114: 110915. doi:10.1016/j.optmat.2021.110915
    [36]
    CHEN A P, SONG ZH Y. Tunable isotropic absorber with phase change material VO 2[J]. IEEE Transactions on Nanotechnology, 2020, 19: 197-200. doi:10.1109/TNANO.2020.2974801
    [37]
    PAN W, SHEN T, MA Y, et al. Dual-band and polarization-independent metamaterial terahertz narrowband absorber[J]. Applied Optics, 2021, 60(8): 2235-2241. doi:10.1364/AO.415461
    [38]
    BIAN J M, WANG M H, SUN H J, et al. Thickness-modulated metal–insulator transition of VO 2film grown on sapphire substrate by MBE[J]. Journal of Materials Science, 2016, 51(13): 6149-6155. doi:10.1007/s10853-016-9863-1
    [39]
    SUN H J, WANG M H, BIAN J M, et al. Terahertz and metal-insulator transition properties of VO 2film grown on sapphire substrate with MBE[J]. Journal of Inorganic Materials, 2017, 32(4): 437-442. doi:10.15541/jim20160456
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(918) PDF downloads(144) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map