Citation: | FENG Qin-yin, QIU Guo-hua, YAN De-xian, Li Ji-ning, Li Xiang-jun. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide[J].Chinese Optics, 2022, 15(2): 387-403.doi:10.37188/CO.2021-0174 |
[1] |
BAO D, SHEN X P, CUI T J. Progress of terahertz metamaterials[J].
Acta Physica Sinica, 2015, 64(22): 228701. (in Chinese)
doi:10.7498/aps.64.228701
|
[2] |
SONG ZH Y, WEI M L, WANG ZH SH. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces[J].
IEEE Photonics Journal, 2019, 11(2): 4600607.
|
[3] |
XU R J, LIU X Y, LIN Y SH. Tunable ultra-narrowband terahertz perfect absorber by using metal-insulator-metal microstructures[J].
Results in Physics, 2019, 13: 102176.
doi:10.1016/j.rinp.2019.102176
|
[4] |
CHEN L, LIAO D G, GUO X G,
et al. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review[J].
Frontiers of Information Technology&
Electronic Engineering, 2019, 20(5): 591-607.
|
[5] |
LI CH Y, CHANG C C, ZHOU Q L,
et al. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs[J].
Optics Express, 2017, 25(21): 25842-25852.
doi:10.1364/OE.25.025842
|
[6] |
LEE Y, KIM S J, PARK H,
et al. Metamaterials and metasurfaces for sensor applications[J].
Sensors, 2017, 17(8): 1726.
doi:10.3390/s17081726
|
[7] |
LANDY N I, SAJUYIGBE S, MOCK J J,
et al. Perfect metamaterial absorber[J].
Physical Review Letters, 2008, 100(20): 207402.
doi:10.1103/PhysRevLett.100.207402
|
[8] |
SHAN Y, CHEN L, SHI CH,
et al. Ultrathin flexible dual band terahertz absorber[J].
Optics Communications, 2015, 350: 63-70.
doi:10.1016/j.optcom.2015.03.072
|
[9] |
WEN Q Y, ZHANG H W, XIE Y S,
et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J].
Applied Physics Letters, 2009, 95(24): 241111.
doi:10.1063/1.3276072
|
[10] |
BAO ZH Y, WANG J CH, HU ZH D,
et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J].
Optics Express, 2019, 27(22): 31435-31445.
doi:10.1364/OE.27.031435
|
[11] |
FANG X M, JIANG X W, WU H. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J].
Chinese Optics, 2021, 14(6): 1327-1340. (in Chinese)
doi:10.37188/CO.2021-0075
|
[12] |
ZHANG Y B, LIU W W, LI ZH CH,
et al. Ultrathin polarization-insensitive wide-angle broadband near-perfect absorber in the visible regime based on few-layer MoS
2films[J].
Applied Physics Letters, 2017, 111(11): 111109.
doi:10.1063/1.4992045
|
[13] |
CHEN SH Q, CHENG H, YANG H F,
et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime[J].
Applied Physics Letters, 2011, 99(25): 253104.
doi:10.1063/1.3670333
|
[14] |
KONG H, LI G F, JIN Z M,
et al. Polarization-independent metamaterial absorber for terahertz frequency[J].
Journal of Infrared,
Millimeter,
and Terahertz Waves, 2012, 33(6): 649-656.
doi:10.1007/s10762-012-9906-x
|
[15] |
RYZHII V, OTSUJI T, RYZHII M,
et al. Graphene terahertz uncooled bolometers[J].
Journal of Physics D:
Applied Physics, 2013, 46(6): 065102.
doi:10.1088/0022-3727/46/6/065102
|
[16] |
SCHURIG D, MOCK J J, JUSTICE B J,
et al. Metamaterial electromagnetic cloak at microwave frequencies[J].
Science, 2006, 314(5801): 977-980.
doi:10.1126/science.1133628
|
[17] |
WANG Y, CUI Z J, ZHU D Y,
et al. Multiband terahertz absorber and selective sensing performance[J].
Optics Express, 2019, 27(10): 14133-14143.
doi:10.1364/OE.27.014133
|
[18] |
ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J].
Chinese Optics, 2014, 7(3): 349-364. (in Chinese)
|
[19] |
REN ZH H, ZHONG M Z, YANG J H,
et al. A polarization-sensitive photodetector based on a AsP/MoS
2heterojunction[J].
Chinese Optics, 2021, 14(1): 135-144. (in Chinese)
doi:10.37188/CO.2020-0189
|
[20] |
YUAN Y H, CHEN X Y, HU F R,
et al. Terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure[J].
Chinese Journal of Lasers, 2019, 46(6): 0614016. (in Chinese)
doi:10.3788/CJL201946.0614016
|
[21] |
WEIS P, GARCIA-POMAR J L, RAHM M. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene[J].
Optics Express, 2014, 22(7): 8473-8489.
doi:10.1364/OE.22.008473
|
[22] |
WU Y, RUAN X ZH, CHEN C H,
et al. Graphene/liquid crystal based terahertz phase shifters[J].
Optics Express, 2013, 21(18): 21395-21402.
doi:10.1364/OE.21.021395
|
[23] |
LIU H, WANG ZH H, LI L,
et al. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber[J].
Scientific Reports, 2019, 9(1): 5751.
doi:10.1038/s41598-019-42293-9
|
[24] |
HU F R, WANG H, ZHANG X W,
et al. Electrically triggered tunable terahertz band-pass filter based on VO
2hybrid metamaterial[J].
IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3): 4700207.
|
[25] |
QAZILBASH M M, BREHM M, CHAE B G,
et al. Mott transition in VO
2revealed by infrared spectroscopy and nano-imaging[J].
Science, 2007, 318(5857): 1750-1753.
doi:10.1126/science.1150124
|
[26] |
HALLMAN K A, MILLER K J, BAYDIN A,
et al. Sub-picosecond response time of a hybrid VO
2: silicon waveguide at 1550 nm[J].
Advanced Optical Materials, 2021, 9(4): 2001721.
doi:10.1002/adom.202001721
|
[27] |
YAN D X, MENG M, LI J SH,
et al. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave[J].
Optics Express, 2020, 28(20): 29843-29854.
doi:10.1364/OE.404829
|
[28] |
SONG ZH Y, CHEN A P, ZHANG J H. Terahertz switching between broadband absorption and narrowband absorption[J].
Optics Express, 2020, 28(2): 2037-2044.
doi:10.1364/OE.376085
|
[29] |
ZHANG M, SONG ZH Y. Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration[J].
Optics Express, 2020, 28(8): 11780-11788.
doi:10.1364/OE.391891
|
[30] |
HUANG J, LI J N, YANG Y,
et al. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces[J].
Optics Express, 2020, 28(12): 17832-17840.
doi:10.1364/OE.394359
|
[31] |
SONG ZH Y, ZHANG J H. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies[J].
Optics Express, 2020, 28(8): 12487-12497.
doi:10.1364/OE.391066
|
[32] |
LIU W W, SONG ZH Y. Terahertz absorption modulator with largely tunable bandwidth and intensity[J].
Carbon, 2021, 174: 617-624.
doi:10.1016/j.carbon.2020.12.001
|
[33] |
CHU Q H, YANG M SH, CHEN J,
et al. Characteristics of tunable Terahertz multi-band absorber[J].
Chinese Journal of Lasers, 2019, 46(12): 1214003. (in Chinese)
doi:10.3788/CJL201946.1214003
|
[34] |
ZHANG CH Y, ZHANG H, LING F,
et al. Dual-regulated broadband terahertz absorber based on vanadium dioxide and graphene[J].
Applied Optics, 2021, 60(16): 4835-4840.
doi:10.1364/AO.426396
|
[35] |
ZHOU R H, JIANG T T, PENG ZH,
et al. Tunable broadband terahertz absorber based on graphene metamaterials and VO
2[J].
Optical Materials, 2021, 114: 110915.
doi:10.1016/j.optmat.2021.110915
|
[36] |
CHEN A P, SONG ZH Y. Tunable isotropic absorber with phase change material VO
2[J].
IEEE Transactions on Nanotechnology, 2020, 19: 197-200.
doi:10.1109/TNANO.2020.2974801
|
[37] |
PAN W, SHEN T, MA Y,
et al. Dual-band and polarization-independent metamaterial terahertz narrowband absorber[J].
Applied Optics, 2021, 60(8): 2235-2241.
doi:10.1364/AO.415461
|
[38] |
BIAN J M, WANG M H, SUN H J,
et al. Thickness-modulated metal–insulator transition of VO
2film grown on sapphire substrate by MBE[J].
Journal of Materials Science, 2016, 51(13): 6149-6155.
doi:10.1007/s10853-016-9863-1
|
[39] |
SUN H J, WANG M H, BIAN J M,
et al. Terahertz and metal-insulator transition properties of VO
2film grown on sapphire substrate with MBE[J].
Journal of Inorganic Materials, 2017, 32(4): 437-442.
doi:10.15541/jim20160456
|