Volume 15Issue 3
May 2022
Turn off MathJax
Article Contents
WANG Yu-xiao, ZHU Ling-ni, ZHONG Li, KONG Jin-xia, LIU Su-ping, MA Xiao-yu. InGaAs/GaAs(P) quantum well intermixing induced by Si impurity diffusion[J]. Chinese Optics, 2022, 15(3): 426-432. doi: 10.37188/CO.2021-0200
Citation: WANG Yu-xiao, ZHU Ling-ni, ZHONG Li, KONG Jin-xia, LIU Su-ping, MA Xiao-yu. InGaAs/GaAs(P) quantum well intermixing induced by Si impurity diffusion[J].Chinese Optics, 2022, 15(3): 426-432.doi:10.37188/CO.2021-0200

InGaAs/GaAs(P) quantum well intermixing induced by Si impurity diffusion

doi:10.37188/CO.2021-0200
More Information
  • Catastrophic Optical Mirror Damage (COMD) on the cavity surface is one of the main factors that restrict the output power and reliability of semiconductor lasers. Quantum well intermixing technology is one of the most commonly used methods to avoid COMD. Si impurity-induced quantum well intermixing technology is explored for high-power, high-reliability laser diode devices. In this paper, a silicon dielectric layer is used as the diffusion source for a study of silicon impurity-induced disordering by annealing in a tube furnace. The effects of the dielectric film thickness, annealing conditions, quantum barrier material and sacrificial layer material on the wavelength blue shift of InGaAs/GaAs(P) quantum wells were analyzed. It is found that the degree of intermixing between quantum well and barrier increases with the increasing of annealing time and temperature, but is particularly sensitive to temperature. The wavelength blue shift of the InGaAs/GaAsP structure is 70.5 nm under 780 ℃ annealing temperature at a duration of 10 hours. Also, the GaAsP barrier structure has a larger blue shift than the GaAs barrier, and the epitaxial layer with an InGaP sacrificial layer has a larger blue shift than the AlGaAs sacrificial layer.

  • loading
  • [1]
    宋悦, 宁永强, 秦莉, 等. 大功率半导体 器抗腔面灾变性光学损伤技术综述[J]. 半导体光电,2020,41(5):618-626.

    SONG Y, NING Y Q, QIN L, et al. Review on the methods of preventing catastrophic optical mirror damage in high-power diode lasers[J]. Semiconductor Optoelectronics, 2020, 41(5): 618-626. (in Chinese)
    [2]
    ARSLAN S, GÜNDOĞDU S, DEMIR A, et al. Facet cooling in high-power InGaAs/AlGaAs lasers[J]. IEEE Photonics Technology Letters, 2019, 31(1): 94-97. doi:10.1109/LPT.2018.2884465
    [3]
    刘启坤, 孔金霞, 朱凌妮, 等. 电致发光用于大功率半导体 器失效模式分析[J]. 发光学报,2018,39(2):180-187.

    LIU Q K, KONG J X, ZHU L N, et al. Failure mode analysis of high-power laser diodes by electroluminescence[J]. Chinese Journal of Luminescence, 2018, 39(2): 180-187. (in Chinese)
    [4]
    葛晓红, 张瑞英, 郭春扬, 等. 多变量离子注入型量子阱混杂效应[J]. 与光电子学进展,2020,57(1):011409.

    GE X H, ZHANG R Y, GUO CH Y, et al. Multiple factor ion implantation-induced quantum well intermixing effect[J]. Laser& Optoelectronics Progress, 2020, 57(1): 011409. (in Chinese)
    [5]
    郭春扬, 张瑞英, 刘纪湾, 等. Cu/SiO 2逐层沉积增强无杂质空位诱导InGaAsP/InGaAsP量子阱混杂[J]. 半导体技术,2019,44(3):189-193.

    GUO CH Y, ZHANG R Y, LIU J W, et al. InGaAsP/InGaAsP quantum well intermixing induced by impurity free vacancy enhanced through Cu/SiO 2deposition[J]. Semiconductor Technology, 2019, 44(3): 189-193. (in Chinese)
    [6]
    JIA ZH K, YANG H, PERROTT A H, et al. Study on the proximity of QWI in InP-based AlGaInAs MQWs using the IFVD method and its application in single frequency teardrop laser diodes[J]. Optics Express, 2020, 28(21): 31904-31913. doi:10.1364/OE.398118
    [7]
    刘翠翠, 林楠, 熊聪, 等. Si杂质扩散诱导InGaAs/AlGaAs量子阱混杂的研究[J]. 中国光学,2020,13(1):203-216. doi:10.3788/co.20201301.0203

    LIU C C, LIN N, XIONG C, et al. Intermixing in InGaAs/AlGaAs quantum well structures induced by the interdiffusion of Si impurities[J]. Chinese Optics, 2020, 13(1): 203-216. (in Chinese) doi:10.3788/co.20201301.0203
    [8]
    田伟男, 熊聪, 王鑫, 等. 基于GaAs膜的GaInP/AlGaInP无杂质空位扩散诱导量子阱混杂的研究[J]. 发光学报,2018,39(8):1095-1099. doi:10.3788/fgxb20183908.1095

    TIAN W N, XIONG C, WANG X, et al. Impurity-free vacancy diffusion induces intermixing in GaInP/AlGaInP quantum wells using GaAs encapsulation[J]. Chinese Journal of Luminescence, 2018, 39(8): 1095-1099. (in Chinese) doi:10.3788/fgxb20183908.1095
    [9]
    RICHARD T A, MAJOR JR J S, KISH F A, et al. Low-threshold disorder-defined buried-heterostructure Al xGa 1−xAs-GaAs quantum well lasers by open-tube rapid thermal annealing[J]. Applied Physics Letters, 1990, 57(27): 2904-2906. doi:10.1063/1.103748
    [10]
    刘翠翠, 林楠, 马骁宇, 等. 带有非吸收窗口的高性能InGaAs/AlGaAs量子阱 二极管[J]. 发光学报,2022,43(1):110-118.

    LIN C C, LIN N, MA X Y, et al. High performance InGaAs/AlGaAs quantum well semiconductor laser diode with nonabsorption window[J]. Chinese Journal of Luminescence, 2022, 43(1): 110-118. (in Chinese)
    [11]
    LEE J K, PARK K H, JANG D H, et al. Improvement of catastrophic optical damage (COD) level for high-power 0.98-μm GaInAs-GaInP laser[J]. IEEE Photonics Technology Letters, 1998, 10(9): 1226-1228. doi:10.1109/68.705598
    [12]
    HIRAMOTO K, SAGAWA M, KIKAWA T, et al. High-power and highly reliable operation of Al-Free InGaAs-InGaAsP 0.98 μm lasers with a window structure fabricated by Si ion implantation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(3): 817-821. doi:10.1109/2944.788455
    [13]
    GUIDO L J, JACKSON G S, PLANO W E, et al. Index-guided Al xGa 1−xAs-GaAs quantum well heterostructure lasers fabricated by vacancy-enhanced impurity-induced layer disordering from an internal (Si 2) y(GaAs) 1−ysource[J]. Applied Physics Letters, 1987, 50(10): 609-611. doi:10.1063/1.98096
    [14]
    FU L, TAN H H, JOHNSTON M B, et al. Proton irradiation-induced intermixing in InGaAs/(Al)GaAs quantum wells and quantum-well lasers[J]. Journal of Applied Physics, 1999, 85(9): 6786-6789. doi:10.1063/1.370291
    [15]
    DALLESASSE J M, PLANO W E, NAM D W, et al. Impurity-induced layer disordering in In 0.5(Al xGa 1−x) 0.5P-InGaP quantum-well heterostructures: visible-spectrum-buried heterostructure lasers[J]. Journal of Applied Physics, 1989, 66(2): 482-487. doi:10.1063/1.343562
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(1097) PDF downloads(195) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map