Citation: | ZHENG Jiang-peng, YU Ping, ZHAO Meng, SHI Fan, SUN Xu-guo, CHEN Sheng-yong. Detection of myocardial amyloidosis by a small number of terahertz spectra with low signal-to-noise ratio[J].Chinese Optics, 2022, 15(3): 443-453.doi:10.37188/CO.2021-0223 |
[1] |
CHATZANTONIS G, BIETENBECK M, ELSANHOURY A,
et al. Diagnostic value of cardiovascular magnetic resonance in comparison to endomyocardial biopsy in cardiac amyloidosis: a multi-centre study[J].
Clinical Research in Cardiology, 2021, 110(4): 555-568.
doi:10.1007/s00392-020-01771-1
|
[2] |
GARCIA-PAVIA P, RAPEZZI C, ADLER Y,
et al. Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC working group on myocardial and pericardial diseases[J].
European Heart Journal, 2021, 42(16): 1554-1568.
doi:10.1093/eurheartj/ehab072
|
[3] |
ASH S, SHORER E, RAMGOBIN D,
et al. Cardiac amyloidosis—a review of current literature for the practicing physician[J].
Clinical Cardiology, 2021, 44(3): 322-331.
doi:10.1002/clc.23572
|
[4] |
LI W J, UPPAL D, WANG Y CH,
et al. Nuclear imaging for the diagnosis of cardiac amyloidosis in 2021[J].
Diagnostics, 2021, 11(6): 996.
doi:10.3390/diagnostics11060996
|
[5] |
BAGGIANO A, BOLDRINI M, MARTINEZ-NAHARRO A,
et al. Noncontrast magnetic resonance for the diagnosis of cardiac amyloidosis[J].
JACC:
Cardiovascular Imaging, 2020, 13(1): 69-80.
doi:10.1016/j.jcmg.2019.03.026
|
[6] |
DORBALA S, CUDDY S, FALK R H. How to image cardiac amyloidosis: a practical approach[J].
JACC:
Cardiovascular Imaging, 2020, 13(6): 1368-1383.
doi:10.1016/j.jcmg.2019.07.015
|
[7] |
阎春生, 黄晨, 韩松涛, 等. 古代纸质文物科学检测技术综述[J]. 中国光学,2020,13(5):936-964.
doi:10.37188/CO.2020-0010
YAN CH SH, HUANG CH, HAN S T,
et al. Review on scientific detection technologies for ancient paper relics[J].
Chinese Optics, 2020, 13(5): 936-964. (in Chinese)
doi:10.37188/CO.2020-0010
|
[8] |
王晓东, 颜伟, 李兆峰, 等. 平面天线在场效应晶体管太赫兹探测器中的应用[J]. 中国光学,2020,13(1):1-13.
doi:10.3788/co.20201301.0001
WANG X D, YAN W, LI ZH F,
et al. Application of planar antenna in field-effect transistor terahertz detectors[J].
Chinese Optics, 2020, 13(1): 1-13. (in Chinese)
doi:10.3788/co.20201301.0001
|
[9] |
ZHANG Y Y, WANG CH T, HUAI B X,
et al. Continuous-wave THz imaging for biomedical samples[J].
Applied Sciences, 2021, 11(1): 71.
|
[10] |
蔡莉, 王淑婷, 刘俊晖, 等. 数据标注研究综述[J]. 软件学报,2020,31(2):302-320.
CAI L, WANG SH T, LIU J H,
et al. Survey of data annotation[J].
Journal of Software, 2020, 31(2): 302-320. (in Chinese)
|
[11] |
BARZ B, DENZLER J. Deep learning on small datasets without pre-training using cosine loss[C].
Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision, IEEE, 2020: 1360-1369.
|
[12] |
LIU S D, SHAN Z, SAV A,
et al. Isocitrate dehydrogenase (IDH) status prediction in histopathology images of gliomas using deep learning[J].
Scientific Reports, 2020, 10(1): 7733.
doi:10.1038/s41598-020-64588-y
|
[13] |
WANG Z S, ZOU C, CAI W W. Small sample classification of hyperspectral remote sensing images based on sequential joint deeping learning model[J].
IEEE Access, 2020, 8: 71353-71363.
doi:10.1109/ACCESS.2020.2986267
|
[14] |
王德文, 魏波涛. 基于孪生变分自编码器的小样本图像分类方法[J]. 智能系统学报,2021,16(2):254-262.
WANG D W, WEI B T. A small-sample image classification method based on a Siamese variational auto-encoder[J].
CAAI Transactions on Intelligent Systems, 2021, 16(2): 254-262. (in Chinese)
|
[15] |
崔向伟, 沈韬, 刘英莉, 等. 小样本太赫兹光谱识别[J]. 与光电子学进展,2021,58(1):0130001.
CUI X W, SHEN T, LIU Y L,
et al. Recognition of small-sample terahertz spectrum[J].
Laser&
Optoelectronics Progress, 2021, 58(1): 0130001. (in Chinese)
|
[16] |
赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述[J]. 软件学报,2021,32(2):349-369.
ZHAO K L, JIN X L, WANG Y ZH. Survey on few-shot learning[J].
Journal of Software, 2021, 32(2): 349-369. (in Chinese)
|
[17] |
张申华, 杨延西, 秦峤孟. 针对光栅图像的快速盲去噪方法[J]. 中国光学,2021,14(3):596-604.
doi:10.37188/CO.2020-0166
ZHANG SH H, YANG Y X, QIN Q M. A fast blind denoising method for grating image[J].
Chinese Optics, 2021, 14(3): 596-604. (in Chinese)
doi:10.37188/CO.2020-0166
|
[18] |
代磊超, 冯林, 尚兴林, 等. 基于深度网络的快速少样本学习算法[J]. 模式识别与人工智能,2021,34(10):941-956.
DAI L CH, FENG L, SHANG X L,
et al. Fast few-shot learning algorithm based on deep network[J].
Pattern Recognition and Artificial Intelligence, 2021, 34(10): 941-956. (in Chinese)
|
[19] |
YU P, ZHENG J P, ZHAO M,
et al. Myocardial amyloidosis detection with terahertz spectroscopy[J].
IEEE Sensors Journal, 2022, 22(3): 2389-2398.
doi:10.1109/JSEN.2021.3133294
|
[20] |
李泽田, 雷志春. 基于局部期望最大化注意力的图像降噪[J]. 液晶与显示,2020,35(4):350-359.
doi:10.3788/YJYXS20203504.0350
LI Z T, LEI ZH CH. Local expectation-maximization attention network for image denoising[J].
Chinese Journal of Liquid Crystals and Displays, 2020, 35(4): 350-359. (in Chinese)
doi:10.3788/YJYXS20203504.0350
|
[21] |
来杰, 王晓丹, 向前, 等. 自编码器及其应用综述[J]. 通信学报,2021,42(9):218-230.
doi:10.11959/j.issn.1000-436x.2021160
LAI J, WANG X D, XIANG Q,
et al. Review on autoencoder and its application[J].
Journal on Communications, 2021, 42(9): 218-230. (in Chinese)
doi:10.11959/j.issn.1000-436x.2021160
|
[22] |
张墺琦, 亢宇鑫, 武卓越, 等. 基于多尺度特征和注意力机制的肝脏组织病理图像语义分割网络[J]. 模式识别与人工智能,2021,34(4):375-384.
ZHANG A Q, KANG Y X, WU ZH Y,
et al. Semantic segmentation network of pathological images of liver tissue based on multi-scale feature and attention mechanism[J].
Pattern Recognition and Artificial Intelligence, 2021, 34(4): 375-384. (in Chinese)
|
[23] |
史健锋, 高治明, 王阿川. 结合ASPP与改进HRNet的多尺度图像语义分割方法研究[J]. 液晶与显示,2021,36(11):1497-1505.
doi:10.37188/CJLCD.2021-0093
SHI J F, GAO ZH M, WANG A CH. Multi-scale image semantic segmentation based on ASPP and improved HRNet[J].
Chinese Journal of Liquid Crystals and Displays, 2021, 36(11): 1497-1505. (in Chinese)
doi:10.37188/CJLCD.2021-0093
|
[24] |
魏丙财, 张立晔, 孟晓亮, 等. 基于深度残差生成对抗网络的运动图像去模糊[J]. 液晶与显示,2021,36(12):1693-1701.
WEI B C, ZHANG L Y, MENG X L,
et al. Motion image deblurring based on depth residual generative adversarial network[J].
Chinese Journal of Liquid Crystals and Displays, 2021, 36(12): 1693-1701. (in Chinese)
|
[25] |
WANG Y Y, WANG G Q, XU D G,
et al. Terahertz spectroscopic diagnosis of early blast-induced traumatic brain injury in rats[J].
Biomedical Optics Express, 2020, 11(8): 4085-4098.
doi:10.1364/BOE.395432
|
[26] |
ZHU H Q, WANG H R, LIU J L,
et al. Application of terahertz dielectric constant spectroscopy for discrimination of oxidized coal and unoxidized coal by machine learning algorithms[J].
Fuel, 2021, 293: 120470.
doi:10.1016/j.fuel.2021.120470
|
[27] |
CAO C, ZHANG ZH H, ZHAO X Y,
et al. Terahertz spectroscopy and machine learning algorithm for non-destructive evaluation of protein conformation[J].
Optical and Quantum Electronics, 2020, 52(4): 225.
doi:10.1007/s11082-020-02345-1
|
[28] |
LEBANOV L, TEDONE L, GHIASVAND A,
et al. Random Forests machine learning applied to gas chromatography – mass spectrometry derived average mass spectrum data sets for classification and characterisation of essential oils[J].
Talanta, 2020, 208: 120471.
doi:10.1016/j.talanta.2019.120471
|
[29] |
HUANG P J, CAO Y Q, CHEN J N,
et al. Analysis and inspection techniques for mouse liver injury based on terahertz spectroscopy[J].
Optics Express, 2019, 27(18): 26014-26026.
doi:10.1364/OE.27.026014
|
[30] |
WEI X, LI S, ZHU SH P,
et al. Terahertz spectroscopy combined with data dimensionality reduction algorithms for quantitative analysis of protein content in soybeans[J].
Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, 2021, 253: 119571.
doi:10.1016/j.saa.2021.119571
|
[31] |
LIAQAT S, DASHTIPOUR K, ARSHAD K,
et al. A hybrid posture detection framework: Integrating machine learning and deep neural networks[J].
IEEE Sensors Journal, 2021, 21(7): 9515-9522.
doi:10.1109/JSEN.2021.3055898
|
[32] |
AYGUL M A, NAZZAL M, EKTI A R,
et al. . Spectrum occupancy prediction exploiting time and frequency correlations through 2D-LSTM[C].
Proceedings of the 2020 IEEE 91st Vehicular Technology Conference(
VTC2020-Spring), IEEE, 2020: 1-5.
|
[33] |
DASHTIPOUR K, GOGATE M, ADEEL A,
et al. Sentiment analysis of Persian movie reviews using deep learning[J].
Entropy, 2021, 23(5): 596.
doi:10.3390/e23050596
|
[34] |
HO C S, JEAN N, HOGAN C A,
et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning[J].
Nature Communications, 2019, 10(1): 4927.
doi:10.1038/s41467-019-12898-9
|
[35] |
DOAN V S, HUYNH-THE T, KIM D S. Underwater acoustic target classification based on dense convolutional neural network[J].
IEEE Geoscience and Remote Sensing Letters, 2020, 19: 1500905.
|
[36] |
WANG C, SHI F, ZHAO M,
et al. Convolutional neural network-based terahertz spectral classification of liquid contraband for security inspection[J].
IEEE Sensors Journal, 2021, 21(17): 18955-18963.
doi:10.1109/JSEN.2021.3086478
|