Citation: | LIU Qiang, ZHAO Jin, SUN Yudan, LIU Wei, WANG Jianxin, LIU Chao, LV Jingwei, WANG Shimiao, JIANG Yu, CHU Paul K. A Novel Methane and Hydrogen sensor with Surface Plasmon Resonance-Based Photonic Quasi-crystal Fiber[J].Chinese Optics.doi:10.37188/CO.2022-0025 |
A novel photonic quasi-crystal fiber (PQF) sensor based on surface plasmon resonance (SPR) is designed for simultaneous detection of methane and hydrogen. In the sensor, Pd-WO3and cryptophane E doped polysiloxane films deposited on silver films are the hydrogen and methane sensing materials, respectively. The PQF-SPR sensor is analyzed numerically by the full-vector finite element method and excellent sensing performance is demonstrated. The maximum and average hydrogen sensitivities are 0.8 nm/% and 0.65 nm/% in the concentration range of 0% to 3.5% and the maximum and average methane sensitivities are 10 nm/% and 8.81 nm/% in the range between 0% and 3.5%. The sensor provides the capability of detecting multiple gases and has large potential in device miniaturization and remote monitoring.
[1] |
HAO Q Q, LUO ZH M, WANG T,
et al. The flammability limits and explosion behaviours of hydrogen-enriched methane-air mixtures[J].
Experimental Thermal and Fluid Science, 2021, 126: 110395.
doi:10.1016/j.expthermflusci.2021.110395
|
[2] |
SUMIDA S, OKAZAKI S, ASAKURA S,
et al. Distributed hydrogen determination with fiber-optic sensor[J].
Sensors and Actuators B:
Chemical, 2005, 108(1-2): 508-514.
doi:10.1016/j.snb.2004.11.068
|
[3] |
YANG J CH, XU L J, CHEN W M. An optical fiber methane gas sensing film sensor based on core diameter mismatch[J].
Chinese Optics Letters, 2010, 8(5): 482-484.
doi:10.3788/COL20100805.0482
|
[4] |
WANG Y, YANG M H, ZHANG G L,
et al. Fiber optic hydrogen sensor based on fabry-perot interferometer coated with sol-gel Pt/WO
3coating[J].
Journal of Lightwave Technology, 2015, 33(12): 2530-2534.
doi:10.1109/JLT.2014.2365183
|
[5] |
ZHOU B, CHEN ZH, ZHANG Y B,
et al. Active fiber gas sensor for methane detecting based on a laser heated fiber bragg grating[J].
IEEE Photonics Technology Letters, 2014, 26(11): 1069-1072.
doi:10.1109/LPT.2014.2314692
|
[6] |
PUSTELNY T, MACIAK E, OPILSKI Z,
et al. Optical interferometric structures for application in gas sensors[J].
Optica Applicata, 2007, 37(1-2): 187-194.
|
[7] |
WANG X X, ZHU J K, XU Y Q,
et al. A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure[J].
Chinese Physics B, 2021, 30(2): 024207.
doi:10.1088/1674-1056/abd690
|
[8] |
WANG X X, WU Y, WEN X L,
et al. Surface plasmons and SERS application of Au nanodisk array and Au thin film composite structure[J].
Optical and Quantum Electronics, 2020, 52(5): 238.
doi:10.1007/s11082-020-02360-2
|
[9] |
LIU Q, JIANG Y, SUN Y D,
et al. Surface plasmon resonance sensor based on U-shaped photonic quasi-crystal fiber[J].
Applied Optics, 2021, 60(6): 1761-1766.
doi:10.1364/AO.419518
|
[10] |
LIU Q, SUN J D, SUN Y D,
et al. Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film[J].
Optical Materials, 2020, 102: 109800.
doi:10.1016/j.optmat.2020.109800
|
[11] |
LI CH G, YAN B, LIU J J. Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance[J].
Journal of the Optical Society of America A, 2019, 36(10): 1663-1668.
doi:10.1364/JOSAA.36.001663
|
[12] |
YAN B, WANG A R, LIU E X,
et al. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber[J].
Journal of Physics D:
Applied Physics, 2018, 51(15): 155105.
doi:10.1088/1361-6463/aab4ce
|
[13] |
SIDDIK A B, HOSSAIN S, PAUL A K,
et al. High sensitivity property of dual-core photonic crystal fiber temperature sensor based on surface plasmon resonance[J].
Sensing and Bio-Sensing Research, 2020, 29: 100350.
doi:10.1016/j.sbsr.2020.100350
|
[14] |
HOSSAIN B, ISLAM S M R, HOSSAIN K M T,
et al. High sensitivity hollow core circular shaped PCF surface plasmonic biosensor employing silver coat: a numerical design and analysis with external sensing approach[J].
Results in Physics, 2020, 16: 102909.
doi:10.1016/j.rinp.2019.102909
|
[15] |
WEI W, NONG J P, ZHANG G W,
et al. Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing[J].
Sensors, 2017, 17(1): 2.
doi:10.1109/JSEN.2016.2633500
|
[16] |
LIU H, WANG M, WANG Q,
et al. Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes[J].
Optical Fiber Technology, 2018, 45: 1-7.
doi:10.1016/j.yofte.2018.05.007
|
[17] |
LIU H, ZHANG Y Z, CHEN C,
et al. Transverse-stress compensated methane sensor based on long-period grating in photonic crystal fiber[J].
IEEE Access, 2019, 7: 175522-175530.
doi:10.1109/ACCESS.2019.2951133
|
[18] |
LIU E X, LIANG SH W, LIU J J. Double-cladding structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber[J].
Superlattices and Microstructures, 2019, 130: 61-67.
doi:10.1016/j.spmi.2019.03.011
|
[19] |
LIU E X, TAN W, YAN B,
et al. Robust transmission of orbital angular momentum mode based on a dual-cladding photonic quasi-crystal fiber[J].
Journal of Physics D:
Applied Physics, 2019, 52(32): 325110.
doi:10.1088/1361-6463/ab2369
|
[20] |
LEE Y S, LEE C G, KIM S. Annular core photonic quasi-crystal fiber with wideband nearly zero ultra-flat dispersion, low confinement loss and high nonlinearity[J].
Optik, 2018, 157: 141-147.
doi:10.1016/j.ijleo.2017.10.166
|
[21] |
SIVABALAN S, RAINA J P. High normal dispersion and large mode area photonic quasi-crystal fiber stretcher[J].
IEEE Photonics Technology Letters, 2011, 23(16): 1139-1141.
doi:10.1109/LPT.2011.2157817
|
[22] |
LIU D M, LIU J CH, WANG H,
et al. Laser etching of groove structures with micro-optical fiber-enhanced irradiation[J].
Nanoscale Research Letters, 2012, 7(1): 318.
doi:10.1186/1556-276X-7-318
|
[23] |
ZHAO Q K, TIAN F J, YANG X H,
et al. Optical fibers with special shaped cores drawn from 3D printed preforms[J].
Optik, 2017, 133: 60-65.
doi:10.1016/j.ijleo.2017.01.002
|
[24] |
MARUYAMA T, FUKUI K. Indium-tin oxide thin films prepared by chemical vapor deposition[J].
Journal of Applied Physics, 1991, 70(7): 3848-3851.
doi:10.1063/1.349189
|
[25] |
BING P B, SUI J L, WU G F,
et al. Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors[J].
Plasmonics, 2020, 15(4): 1071-1076.
doi:10.1007/s11468-020-01131-9
|
[26] |
ZHANG Y N, ZHAO Y, WANG Q. Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity[J].
Sensors and Actuators B:
Chemical, 2015, 209: 431-437.
doi:10.1016/j.snb.2014.12.002
|
[27] |
SHAKYA A K, SINGH S. Design of dual polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum[J].
Optics Communications, 2021, 478: 126372.
doi:10.1016/j.optcom.2020.126372
|
[28] |
YAN X, FU R, CHENG T L,
et al. A highly sensitive refractive index sensor based on a V-shaped photonic crystal fiber with a high refractive index range[J].
Sensors, 2021, 21(11): 3782.
doi:10.3390/s21113782
|
[29] |
LIU Q, SUN J D, SUN Y D,
et al. High-sensitivity SPR sensor based on the eightfold eccentric core PQF with locally coated indium tin oxide[J].
Applied Optics, 2020, 59(22): 6484-6489.
doi:10.1364/AO.395605
|
[30] |
YANG ZH, XIA L, LI CH,
et al. A surface plasmon resonance sensor based on concave-shaped photonic crystal fiber for low refractive index detection[J].
Optics Communications, 2019, 430: 195-203.
doi:10.1016/j.optcom.2018.08.049
|
[31] |
ZHAN Y S, LI Y L, WU ZH Q,
et al. Surface plasmon resonance-based microfiber sensor with enhanced sensitivity by gold nanowires[J].
Optical Materials Express, 2018, 8(12): 3927-3940.
doi:10.1364/OME.8.003927
|
[32] |
PAUL K A, HABIB S, HAI N H,
et al. An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing[J].
Optics Communications, 2020, 464: 125556.
doi:10.1016/j.optcom.2020.125556
|
[33] |
LIU Q, ZHAO J, SUN Y D,
et al. High-sensitivity methane sensor composed of photonic quasi-crystal fiber based on surface plasmon resonance[J].
Journal of the Optical Society of America A, 2021, 38(10): 1438-1442.
doi:10.1364/JOSAA.432045
|
[34] |
GANGWAR R K, SINGH V K. Highly Sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor[J].
Plasmonics, 2017, 12(5): 1367-1372.
doi:10.1007/s11468-016-0395-y
|
[35] |
HOSSAIN B, HOSSAIN S, ISLAM S M R,
et al. Numerical development of high performance quasi D-shape PCF-SPR biosensor: an external sensing approach employing gold[J].
Results in Physics, 2020, 18: 103281.
doi:10.1016/j.rinp.2020.103281
|
[36] |
HOSSAIN B, MAHENDIRAN T V, ABDULRAZAK L F,
et al. Numerical analysis of gold coating based quasi D-shape dual core PCF SPR sensor[J].
Optical and Quantum Electronics, 2020, 52(10): 446.
doi:10.1007/s11082-020-02555-7
|
[37] |
LIANG H, SHEN Y, FENG Y,
et al. A surface plasmon resonance temperature sensing unit based on a graphene oxide composite photonic crystal fiber[J].
IEEE Photonics Journal, 2020, 12(3): 7201811.
|