Citation: | YANG Shu-han, QIAO Shun-da, LIN Dian-yang, MA Yu-fei. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J].Chinese Optics, 2023, 16(1): 151-157.doi:10.37188/CO.2022-0029 |
Tunable Diode Laser Absorption Spectroscopy (TDLAS) is a recently developed laser spectral gas detection technology. Compared with common oxygen sensors such as electrochemical devices and ionic conductive ceramics, TDLAS has the advantages of high selectivity and sensitivity, fast response, on-line measurement and strong anti-background spectral interference ability. Oxygen (O2) is an important gas in habitable environments and is greatly significant to industrial production and human life, and the detection of O2concentration is also widely used in these fields. Based on this, we adopt TDLAS technology to carry out high sensitivity measurements of O2in air. Using a semiconductor laser with an output wavelength of 760 nm as the light source, the oxygen concentration in the environment is 20.56% by direct absorption spectroscopy, and the minimum detection limit is 5.53×10−3. In the wavelength modulation spectroscopy method, the laser wavelength modulation depth is optimized to obtain a complete second harmonic waveform, which can be used to calibrate the oxygen concentration. The SNR of the system is 380.74, and the minimum detection limit is about 540×10−6. The system realized in this paper has good oxygen detection ability and can be widely used in various fields of oxygen concentration detection.
[1] |
隋丽丽, 黄微微, 王平, 等. 原位生长的α-Fe
2O
3/ZnO异质纳米棒阵列对乙醇气体的高选择性检测[J]. 应用化学,2021,38(7):857-865.
SUI L L, HUANG W W, WANG P,
et al.
In situdeposited heterogeneous α-Fe
2O
3/ZnO nanorod arrays for highly selective detection of ethanol[J].
Chinese Journal of Applied Chemistry, 2021, 38(7): 857-865. (in Chinese)
|
[2] |
伞晓广, 巩晓辉, 陆一鸣, 等. NiO-WO
3纳米立方块的制备及在甲醛检测中的应用[J]. 应用化学,2020,37(10):1203-1210.
doi:10.11944/j.issn.1000-0518.2020.10.200059
SAN X G, GONG X H, LU Y M,
et al. Synthesis of NiO-WO
3nanocubes and their application in detecting formaldehyde[J].
Chinese Journal of Applied Chemistry, 2020, 37(10): 1203-1210. (in Chinese)
doi:10.11944/j.issn.1000-0518.2020.10.200059
|
[3] |
李佳祁, 付大友, 王竹青, 等. 基于气液相化学发光技术的臭氧在线检测方法[J]. 应用化学,2020,37(1):96-102.
doi:10.11944/j.issn.1000-0518.2020.01.190136
LI J Q, FU D Y, WANG ZH Q,
et al. Online ozone detection method based on gas-liquid phase chemiluminescence technology[J].
Chinese Journal of Applied Chemistry, 2020, 37(1): 96-102. (in Chinese)
doi:10.11944/j.issn.1000-0518.2020.01.190136
|
[4] |
KOCACHE R. The measurement of oxygen on gas mixtures[J].
Journal of Physics E:
Scientific Instruments, 1986, 19(6): 401-410.
doi:10.1088/0022-3735/19/6/001
|
[5] |
KOCACHE R M A, SWAN J, HOLMAN D F. A miniature rugged and accurate solid electrolyte oxygen sensor[J].
Journal of Physics E:
Scientific Instruments, 1984, 17(6): 477-482.
doi:10.1088/0022-3735/17/6/014
|
[6] |
MERILÄINEN P T. Sensors for oxygen analysis: paramagnetic, electrochemical, polarographic, and zirconium oxide technologies[J].
Biomedical Instrumentation&
Technology, 1989, 23(6): 462-466.
|
[7] |
刘云燕, 潘教青, 程传福, 等. 半导体 器在氧气探测中的应用及关键技术[J]. 与红外,2011,41(5):501-505.
doi:10.3969/j.issn.1001-5078.2011.05.004
LIU Y Y, PAN J Q, CHENG CH F,
et al. Application and key technologies of semiconductor laser in the detection of oxygen[J].
Laser&
Infrared, 2011, 41(5): 501-505. (in Chinese)
doi:10.3969/j.issn.1001-5078.2011.05.004
|
[8] |
谢耀, 华道柱, 齐宇, 等. GFC-IFC技术在多组分微量气体分析中的应用[J]. 中国光学,2021,14(6):1378-1386.
doi:10.37188/CO.2021-0064
XIE Y, HUA D ZH, QI Y,
et al. Applications of GFC-IFC in trace multi-component gas analysis[J].
Chinese Optics, 2021, 14(6): 1378-1386. (in Chinese)
doi:10.37188/CO.2021-0064
|
[9] |
MA Y F, HE Y, TONG Y,
et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection[J].
Optics Express, 2018, 26(24): 32103-32110.
doi:10.1364/OE.26.032103
|
[10] |
MA Y F, LEWICKI R, RAZEGHI M,
et al. QEPAS based ppb-level detection of CO and N
2O using a high power CW DFB-QCL[J].
Optics Express, 2013, 21(1): 1008-1019.
doi:10.1364/OE.21.001008
|
[11] |
张步强, 许振宇, 刘建国, 等. 基于波长调制技术的 器调制特性研究[J]. 光谱学与光谱分析,2019,39(9):2702-2707.
ZHANG B Q, XU ZH Y, LIU J G,
et al. Modulation characteristics of laser based on wavelength modulation technology[J].
Spectroscopy and Spectral Analysis, 2019, 39(9): 2702-2707. (in Chinese)
|
[12] |
钟笠, 宋迪, 焦月, 等. 具有复杂光谱特征的丙烯气体的TDLAS检测技术研究[J]. 中国光学,2020,13(5):1044-1054.
doi:10.37188/CO.2019-0203
ZHONG L, SONG D, JIAO Y,
et al. TDLAS detection of propylene with complex spectral features[J].
Chinese Optics, 2020, 13(5): 1044-1054. (in Chinese)
doi:10.37188/CO.2019-0203
|
[13] |
SCHLOSSER H E, WOLFROM J, EBERT V,
et al. In situ determination of molecular oxygen concentrations in full-scale fire-suppression tests using tunable diode laser absorption spectroscopy[J].
Proceedings of the Combustion Institute, 2001: 353-360.
|
[14] |
张春晓. 基于可调谐半导体 吸收光谱技术的O
2和CO气体测量[D]. 杭州: 浙江大学, 2010: 86.
ZHANG CH X. O
2and CO sensing based on tunable diode laser absorption spectroscopy[D]. Hangzhou: Zhejiang University, 2010: 86. (in Chinese)
|
[15] |
GAO Y W, ZHANG Y J, CHEN D,
et al. Real-time O
2measurement in a cement kiln with a TDLAS analyzer[J].
Proceedings of the SPIE, 2016, 10155: 101552R.
|
[16] |
ZHOU X, YU J, WANG L,
et al. Sensitive detection of oxygen using a diffused integrating cavity as a gas absorption cell[J].
Sensors and Actuators B:
Chemical, 2017, 241: 1076-1081.
doi:10.1016/j.snb.2016.10.033
|
[17] |
臧益鹏, 聂伟, 许振宇, 等. 基于可调谐二极管 吸收光谱的痕量水汽测量[J]. 光学学报,2018,38(11):1130004.
doi:10.3788/AOS201838.1130004
ZANG Y P, NIE W, XU ZH Y,
et al. Measurement of trace water vapor based on tunable diode laser absorption spectroscopy[J].
Acta Optica Sinica, 2018, 38(11): 1130004. (in Chinese)
doi:10.3788/AOS201838.1130004
|
[18] |
袁志国, 马修真, 刘晓楠, 等. 利用可调谐 吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学,2020,13(2):281-289.
doi:10.3788/co.20201302.0281
YUAN ZH G, MA X ZH, LIU X N,
et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J].
Chinese Optics, 2020, 13(2): 281-289. (in Chinese)
doi:10.3788/co.20201302.0281
|
[19] |
邓瑶, 唐雯, 李峥辉, 等. 基于直接吸收峰峰值标定的气体浓度反演方法研究[J]. 与光电子学进展,2021,58(3):0330002.
DENG Y, TANG W, LI ZH H,
et al. Gas concentration inversion method based on calibration of direct absorption peak value[J].
Laser&
Optoelectronics Progress, 2021, 58(3): 0330002. (in Chinese)
|