Volume 16Issue 3
May 2023
Turn off MathJax
Article Contents
ZHAO Li-na, WEI Qing-tao. Synchronization transmission technology of semiconductor lasers with transverse effect[J]. Chinese Optics, 2023, 16(3): 559-566. doi: 10.37188/CO.2022-0031
Citation: ZHAO Li-na, WEI Qing-tao. Synchronization transmission technology of semiconductor lasers with transverse effect[J].Chinese Optics, 2023, 16(3): 559-566.doi:10.37188/CO.2022-0031

Synchronization transmission technology of semiconductor lasers with transverse effect

doi:10.37188/CO.2022-0031
Funds:Supported by Scientific Research Project of Education Department of Liaoning Province (No. LJKMZ20221912, No.LJKZ1354)
More Information
  • Corresponding author:68225578@qq.com
  • Received Date:03 Mar 2022
  • Rev Recd Date:23 Mar 2022
  • Available Online:16 Jun 2022
  • In this paper, a dynamic equation of a semiconductor laser with transverse effect is given by modifying the dynamic model, and the influence of the transverse effect on its output characteristics is analyzed. On this basis, the synchronization transmission technology of a semiconductor laser’s output signal with transverse effect is further studied. The results show that the output of the semiconductor laser presents a new spatiotemporal chaotic state after considering the transverse effect, and is very sensitive to the initial value. At the same time, whether the synchronization transmission of single-channel or multi-channel signals is carried out by a semiconductor laser, its transmission performance is very stable. The synchronization technology is very simple and easy to apply in practice.

  • loading
  • [1]
    MABHOUTI K, SAMADZADEH N. Effect of the frequency detuning on the stability analysis in a semiconductor laser subject to optical injection: Hopf and Routh-Horwitz conditions[J]. Iranian Journal of Physics Research, 2021, 21(1): 131-143.
    [2]
    QIAO X D, MIDYA B, GAO Z H, et al. Higher-dimensional supersymmetric microlaser arrays[J]. Science, 2021, 372(6540): 403-408. doi:10.1126/science.abg3904
    [3]
    CABRERA L V P, REYES T F, MORET Y P, et al. Application of a temporal synchronization device for the study of laser-induced plasma spectroscopy in a multi-pulse regime[J]. Applied Optics, 2021, 60(6): 1574-1577. doi:10.1364/AO.418367
    [4]
    FATAF N A A, RAHIM M F A, HE SH B, et al. A communication scheme based on fractional order chaotic laser for Internet of things[J]. Internet of Things, 2021, 15: 100425. doi:10.1016/j.iot.2021.100425
    [5]
    SAEED N, ÇIÇEK S, CHAMGOUÉ A C, et al. Bistable and coexisting attractors in current modulated edge emitting semiconductor laser: control and microcontroller-based design[J]. Optical and Quantum Electronics, 2021, 53(6): 333. doi:10.1007/s11082-021-02979-9
    [6]
    匡尚奇, 郭祥帅, 冯玉玲, 等. 半导体 器系统输出混沌 研究进展[J]. 中国光学,2021,14(5):1133-1145. doi:10.37188/CO.2020-0216

    KUANG SH Q, GUO X SH, FENG Y L, et al. Research progress of optical chaos in semiconductor laser systems[J]. Chinese Optics, 2021, 14(5): 1133-1145. (in Chinese) doi:10.37188/CO.2020-0216
    [7]
    ZHAO X, LIU J, MOU J, et al. Characteristics of a laser system in complex field and its complex self-synchronization[J]. The European Physical Journal Plus, 2020, 135(6): 507. doi:10.1140/epjp/s13360-020-00509-2
    [8]
    ROY A, MISRA A P, BANERJEE S. Synchronization in networks of coupled hyperchaotic CO 2lasers[J]. Physica Scripta, 2020, 95(4): 045225. doi:10.1088/1402-4896/ab6e4d
    [9]
    BAZHANOVA M V, KRYLOVA N P, KAZANTSEV V B, et al. Synchronization in a network of spiking neural oscillators with plastic connectivity[J]. Radiophysics and Quantum Electronics, 2021, 63(4): 298-309.
    [10]
    URDAPILLETA E. Transition to synchronization in heterogeneous inhibitory neural networks with structured synapses[J]. Chaos, 2021, 31(3): 033151. doi:10.1063/5.0038896
    [11]
    ZANOTTO F M, STEINBOCK O. Asymmetric synchronization in lattices of pinned spiral waves[J]. Physical Review E, 2021, 103(2): 022213. doi:10.1103/PhysRevE.103.022213
    [12]
    DELELLIS P, GAROFALO F, LO IUDICE F. The partial pinning control strategy for large complex networks[J]. Automatica, 2018, 89: 111-116. doi:10.1016/j.automatica.2017.11.025
    [13]
    MEDEIROS E S, MEDRANO-T R O, CALDAS I L, et al. The impact of chaotic saddles on the synchronization of complex networks of discrete-time units[J]. Journal of Physics: Complexity, 2021, 2(3): 035002. doi:10.1088/2632-072X/abedc2
    [14]
    LV L, ZHANG F L, SUN A. Synchronization between uncertain spatiotemporal networks based on open-loop and closed-loop coupling technology[J]. Physica A, 2019, 526: 120712. doi:10.1016/j.physa.2019.03.077
    [15]
    GHAFFARI A, AREBI S. Pinning control for synchronization of nonlinear complex dynamical network with suboptimal SDRE controllers[J]. Nonlinear Dynamics, 2016, 83(1-2): 1003-1013. doi:10.1007/s11071-015-2383-8
    [16]
    TOOMEY J P, KANE D M. Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy[J]. Optics Express, 2014, 22(2): 1713-1725. doi:10.1364/OE.22.001713
    [17]
    WIECZOREK S, KRAUSKOPF B, LENSTRA D. Mechanisms for multistability in a semiconductor laser with optical injection[J]. Optics Communications, 2000, 183(1-4): 215-226. doi:10.1016/S0030-4018(00)00867-1
    [18]
    CHLOUVERAKIS K E. Color maps of the Kaplan-Yorke dimension in optically driven lasers: maximizing the dimension and almost-Hamiltonian chaos[J]. International Journal of Bifurcation and Chaos, 2005, 15(9): 3011-3021. doi:10.1142/S0218127405013848
    [19]
    LUGIATO L A, LEFEVER R. Spatial dissipative structures in passive optical systems[J]. Physical Review Letters, 1987, 58(21): 2209-2211. doi:10.1103/PhysRevLett.58.2209
    [20]
    海一娜, 邹永刚, 田锟, 等. 水平腔面发射半导体 器研究进展[J]. 中国光学,2017,10(2):194-206. doi:10.3788/co.20171002.0194

    HAI Y N, ZOU Y G, TIAN K, et al. Research progress of horizontal cavity surface emitting semiconductor lasers[J]. Chinese Optics, 2017, 10(2): 194-206. (in Chinese) doi:10.3788/co.20171002.0194
    [21]
    孙胜明, 范杰, 徐莉, 等. 锥形半导体 器研究进展[J]. 中国光学,2019,12(1):48-58. doi:10.3788/co.20191201.0048

    SUN SH M, FAN J, XU L, et al. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 48-58. (in Chinese) doi:10.3788/co.20191201.0048
    [22]
    高月娟, 陈飞, 潘其坤, 等. 用于超短脉冲CO 2 的半导体光开关理论建模与数值分析[J]. 中国光学,2020,13(3):577-585.

    GAO Y J, CHEN F, PAN Q K, et al. Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO 2laser[J]. Chinese Optics, 2020, 13(3): 577-585. (in Chinese)
    [23]
    叶余杰, 柯少颖, 吴金镛, 等. 横向收集结构锗硅半导体雪崩探测器的设计研究[J]. 中国光学,2019,12(4):833-842. doi:10.3788/co.20191204.0833

    YE Y J, KE SH Y, WU J Y, et al. Design and research of Ge/Si avalanche photodiode with a specific lateral carrier collection structure[J]. Chinese Optics, 2019, 12(4): 833-842. (in Chinese) doi:10.3788/co.20191204.0833
    [24]
    陈洪宇, 王月飞, 闫珺, 等. 基于Se和有机无机钙钛矿异质结的宽光谱光电探测器制备及其光电特性研究[J]. 中国光学,2019,12(5):1057-1063. doi:10.3788/co.20191205.1057

    CHEN H Y, WANG Y F, YAN J, et al. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction[J]. Chinese Optics, 2019, 12(5): 1057-1063. (in Chinese) doi:10.3788/co.20191205.1057
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views(417) PDF downloads(250) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map