Volume 15Issue 3
May 2022
Turn off MathJax
Article Contents
ZHANG Xiang-hui, YU Hua-dong, XU Jin-kai, YU Zhan-jiang, LI Yi-quan, YU hao-yang. Displacement compensation method for in-situ observation of micro orthogonal cutting process[J]. Chinese Optics, 2022, 15(3): 476-487. doi: 10.37188/CO.2022-0032
Citation: ZHANG Xiang-hui, YU Hua-dong, XU Jin-kai, YU Zhan-jiang, LI Yi-quan, YU hao-yang. Displacement compensation method for in-situ observation of micro orthogonal cutting process[J].Chinese Optics, 2022, 15(3): 476-487.doi:10.37188/CO.2022-0032

Displacement compensation method for in-situ observation of micro orthogonal cutting process

doi:10.37188/CO.2022-0032
Funds:Supported by Key Research and Development Project of Jilin province (No. 20210201112GX); National Key Research and Development Program of China (No. 2018YFB1107400)
More Information
  • Corresponding author:yuhd@cust.edu.cn,yuhd@cust.edu.cn,
  • Received Date:27 Dec 2021
  • Rev Recd Date:13 Jan 2022
  • Available Online:07 Apr 2022
  • Publish Date:20 May 2022
  • In-situ observation and Digital Image Correlation (DIC) analysis have gradually been widely used in the analysis of plastic deformation in metal cutting processes and become a major means of material deformation analysis due to the intuitive and accurate process of measurement and analysis. In order to meet the demand of obtaining a large observation field and making the displacement field analysis results clear and intuitive when analyzing metal micro orthogonal cutting in-situ microscopy, we propose an improved image size compression matching algorithm to detect and compensate for the displacement deviation between image sequences, and transform the cutting condition from the workpiece to the tool to conduct the feed motion. In comparing with the normalized product correlation matching algorithm, it is concluded that the proposed image size compression matching algorithm can significantly improve the execution efficiency and achieve high search accuracy at the same time. Finally, two images are extracted from the image sequence, and the displacement deviation compensation and DIC analysis of the displacement field in the deformation zone are performed. It is concluded that the compensation method in this paper can effectively compensate for the displacement deviation caused by the feed motion of the workpiece and the vibration in the external environment, and make the relative motion trend between the sample materials in the deformation zone displacement field analysis more intuitive.

  • loading
  • [1]
    程凯, 霍德鸿. 微切削技术基础与应用[M]. 丁辉, 译. 北京: 机械工业出版社, 2015.

    CHENG K, HUO D H . Micro-Cutting Fundamentals and Applications[M]. DING H, trans. Beijing: Machinery Industry Press, 2015. (in Chinese)
    [2]
    CHAMBERS D. Digital Image Correlation: Advanced Methods and Applications[M]. New York: Nova Science Publishers, Inc, 2017.
    [3]
    LIN M T, SCIAMMARELLA C, ESPINOSA H D, et al. . Advancements in Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3[M]. Cham: Society for Experimental Mechanics, Inc, 2020.
    [4]
    胡悦, 王永红, 鲍思源, 等. 高温下数字图像相关散斑最优成像探究[J]. 中国光学,2018,11(5):728-735. doi:10.3788/co.20181105.0728

    HU Y, WANG Y H, BAO S Y, et al. Optimal imaging of digital image correlation speckle under high temperature[J]. Chinese Optics, 2018, 11(5): 728-735. (in Chinese) doi:10.3788/co.20181105.0728
    [5]
    胡慧然, 但西佐, 赵琪涵, 等. 数字图像相关中的散斑区域自动提取研究[J]. 中国光学,2019,12(6):1329-1337. doi:10.3788/co.20191206.1329

    HU H R, DAN X Z, ZHAO Q H, et al. Automatic extraction of speckle area in digital image correlation[J]. Chinese Optics, 2019, 12(6): 1329-1337. (in Chinese) doi:10.3788/co.20191206.1329
    [6]
    张贵阳, 霍炬, 杨明, 等. 多相机网络联合约束优化的高精度三维变形全场测量[J]. 光学 精密工程,2021,29(7):1653-1666. doi:10.37188/OPE.20212907.1653

    ZHANG G Y, HUO J, YANG M, et al. High-precision and full-field measurement of 3D deformation based on multi-camera network joint constraint optimization[J]. Optics and Precision Engineering, 2021, 29(7): 1653-1666. (in Chinese) doi:10.37188/OPE.20212907.1653
    [7]
    王立忠, 赵建博, 谈杰, 等. 高强钢薄板高温焊接变形的视觉测量[J]. 光学 精密工程,2020,28(2):283-295.

    WANG L ZH, ZHAO J B, TAN J, et al. Visual measurement of high-temperature welding deformation for high-strength steel sheet[J]. Optics and Precision Engineering, 2020, 28(2): 283-295. (in Chinese)
    [8]
    陈小琦, 张可, 聂广超, 等. 基于切削原位成像法的45钢塑性本构参数辨识[J]. 航空制造技术,2021,64(13):90-95.

    CHEN X Q, ZHANG K, NIE G CH, et al. Identification of plastic constitutive parameters of 45 steel based on in-situ imaging of cutting process[J]. Aeronautical Manufacturing Technology, 2021, 64(13): 90-95. (in Chinese)
    [9]
    张东. 基于切削原位成像的加工应力应变场预报研究[D]. 武汉: 华中科技大学, 2019.

    ZHANG D. In situ imaging of cutting process and prediction of strain/stress fields[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
    [10]
    HARZALLAH M, POTTIER T, GILBLAS R, et al. A coupled in-situ measurement of temperature and kinematic fields in Ti-6Al-4V serrated chip formation at micro-scale[J]. International Journal of Machine Tools and Manufacture, 2018, 130-131: 20-35. doi:10.1016/j.ijmachtools.2018.03.003
    [11]
    郭振民. 多晶体金属微切削动态过程在位分析[D]. 长春: 长春理工大学, 2021.

    GUO ZH M. In situ analysis of dynamic process of polycrystalline metal micro cutting[D]. Changchun: Changchun University of Science and Technology, 2021. (in Chinese)
    [12]
    YANG J, BHATTACHARYA K. Augmented Lagrangian digital image correlation[J]. Experimental Mechanics, 2019, 59(2): 187-205. doi:10.1007/s11340-018-00457-0
    [13]
    周栋. 晶圆定位视觉检测系统设计[D]. 沈阳: 沈阳工业大学, 2019.

    ZHOU D. Design of wafer positioning visual inspection system[D]. Shenyang: Shenyang University of Technology, 2019. (in Chinese)
    [14]
    吕福超. 基于傅里叶变换轮廓术的地表沉降监测技术研究[D]. 西安: 西安科技大学, 2017.

    LV F CH. Research on monitoring technology of ground settlement based on Fourier transform profilometry[D]. Xi’an: Xi’an University of Science and Technology, 2017. (in Chinese)
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article views(606) PDF downloads(111) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map