Citation: | ZHANG Xiang-hui, YU Hua-dong, XU Jin-kai, YU Zhan-jiang, LI Yi-quan, YU hao-yang. Displacement compensation method for in-situ observation of micro orthogonal cutting process[J].Chinese Optics, 2022, 15(3): 476-487.doi:10.37188/CO.2022-0032 |
[1] |
程凯, 霍德鸿. 微切削技术基础与应用[M]. 丁辉, 译. 北京: 机械工业出版社, 2015.
CHENG K, HUO D H
. Micro-Cutting Fundamentals and Applications[M]. DING H, trans. Beijing: Machinery Industry Press, 2015. (in Chinese)
|
[2] |
CHAMBERS D.
Digital Image Correlation: Advanced Methods and Applications[M]. New York: Nova Science Publishers, Inc, 2017.
|
[3] |
LIN M T, SCIAMMARELLA C, ESPINOSA H D,
et al. . Advancements in Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3[M]. Cham: Society for Experimental Mechanics, Inc, 2020.
|
[4] |
胡悦, 王永红, 鲍思源, 等. 高温下数字图像相关散斑最优成像探究[J]. 中国光学,2018,11(5):728-735.
doi:10.3788/co.20181105.0728
HU Y, WANG Y H, BAO S Y,
et al. Optimal imaging of digital image correlation speckle under high temperature[J].
Chinese Optics, 2018, 11(5): 728-735. (in Chinese)
doi:10.3788/co.20181105.0728
|
[5] |
胡慧然, 但西佐, 赵琪涵, 等. 数字图像相关中的散斑区域自动提取研究[J]. 中国光学,2019,12(6):1329-1337.
doi:10.3788/co.20191206.1329
HU H R, DAN X Z, ZHAO Q H,
et al. Automatic extraction of speckle area in digital image correlation[J].
Chinese Optics, 2019, 12(6): 1329-1337. (in Chinese)
doi:10.3788/co.20191206.1329
|
[6] |
张贵阳, 霍炬, 杨明, 等. 多相机网络联合约束优化的高精度三维变形全场测量[J]. 光学 精密工程,2021,29(7):1653-1666.
doi:10.37188/OPE.20212907.1653
ZHANG G Y, HUO J, YANG M,
et al. High-precision and full-field measurement of 3D deformation based on multi-camera network joint constraint optimization[J].
Optics and Precision Engineering, 2021, 29(7): 1653-1666. (in Chinese)
doi:10.37188/OPE.20212907.1653
|
[7] |
王立忠, 赵建博, 谈杰, 等. 高强钢薄板高温焊接变形的视觉测量[J]. 光学 精密工程,2020,28(2):283-295.
WANG L ZH, ZHAO J B, TAN J,
et al. Visual measurement of high-temperature welding deformation for high-strength steel sheet[J].
Optics and Precision Engineering, 2020, 28(2): 283-295. (in Chinese)
|
[8] |
陈小琦, 张可, 聂广超, 等. 基于切削原位成像法的45钢塑性本构参数辨识[J]. 航空制造技术,2021,64(13):90-95.
CHEN X Q, ZHANG K, NIE G CH,
et al. Identification of plastic constitutive parameters of 45 steel based on in-situ imaging of cutting process[J].
Aeronautical Manufacturing Technology, 2021, 64(13): 90-95. (in Chinese)
|
[9] |
张东. 基于切削原位成像的加工应力应变场预报研究[D]. 武汉: 华中科技大学, 2019.
ZHANG D. In situ imaging of cutting process and prediction of strain/stress fields[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
|
[10] |
HARZALLAH M, POTTIER T, GILBLAS R,
et al. A coupled in-situ measurement of temperature and kinematic fields in Ti-6Al-4V serrated chip formation at micro-scale[J].
International Journal of Machine Tools and Manufacture, 2018, 130-131: 20-35.
doi:10.1016/j.ijmachtools.2018.03.003
|
[11] |
郭振民. 多晶体金属微切削动态过程在位分析[D]. 长春: 长春理工大学, 2021.
GUO ZH M. In situ analysis of dynamic process of polycrystalline metal micro cutting[D]. Changchun: Changchun University of Science and Technology, 2021. (in Chinese)
|
[12] |
YANG J, BHATTACHARYA K. Augmented Lagrangian digital image correlation[J].
Experimental Mechanics, 2019, 59(2): 187-205.
doi:10.1007/s11340-018-00457-0
|
[13] |
周栋. 晶圆定位视觉检测系统设计[D]. 沈阳: 沈阳工业大学, 2019.
ZHOU D. Design of wafer positioning visual inspection system[D]. Shenyang: Shenyang University of Technology, 2019. (in Chinese)
|
[14] |
吕福超. 基于傅里叶变换轮廓术的地表沉降监测技术研究[D]. 西安: 西安科技大学, 2017.
LV F CH. Research on monitoring technology of ground settlement based on Fourier transform profilometry[D]. Xi’an: Xi’an University of Science and Technology, 2017. (in Chinese)
|