Citation: | ZUO Chao, CHEN Qian. Resolution, super-resolution and spatial bandwidth product expansion——some thoughts from the perspective of computational optical imaging[J].Chinese Optics, 2022, 15(6): 1105-1166.doi:10.37188/CO.2022-0105 |
Conventional optical imaging is essentially a process of recording and reproducing the intensity signal of a scene in the spatial dimension with direct uniform sampling. In this process, the resolution and information content of imaging are inevitably constrained by several physical limitations such as optical diffraction limit, detector sampling, and spatial bandwidth product of the imaging system. How to break these physical limitations and obtain higher resolution and broader image field of view has been an eternal topic in this field. In this paper, we introduce the basic theories and technologies associated with the resolution, super-resolution, and spatial bandwidth product expansion, as well as some examples in the field of computational optical imaging. By placing these specific cases into the higher dimensional framework of "computational optical imaging", this paper reveals that most of them can be understood as a "spatial bandwidth regulation" scheme, i.e., a process of exploiting the available degrees of freedom of the imaging system to optimally encode, decode, and transmit information within the constraints of the limited spatial bandwidth of the imaging system, or figuratively speaking - "dancing with shackles". This is essentially a legal trade-off and choice between "gain" and "loss" under physical constraints. The conclusions of this paper are expected to provide valuable insights into the design and exploration of new imaging mechanisms and methods for various complex practical imaging applications.
[1] |
COSSAIRT O S, MIAU D, NAYAR S K. Gigapixel Computational Imaging[C]//
2011 IEEE International Conference on Computational Photography (ICCP). 2011: 1-8. https://doi.org/10.1109/ICCPHOT.2011.5753115.
|
[2] |
BRADY D J, GEHM M E, STACK R A,
et al. Multiscale gigapixel photography[J].
Nature, 2012, 486(7403): 386-389.
doi:10.1038/nature11150
|
[3] |
PARK J, BRADY D J, ZHENG G,
et al. Review of bio-optical imaging systems with a high space-bandwidth product[J].
Advanced Photonics, 2021, 3(4): 044001.
doi:10.1117/1.AP.3.4.044001
|
[4] |
LIU Y, GADEPALLI K, NOROUZI M,
et al.. Detecting Cancer Metastases on Gigapixel Pathology Images: arXiv: 1703.02442[R/OL]. arXiv, 2017[2022-05-21]. http://arxiv.org/abs/1703.02442.
|
[5] |
ZUO, CH, CHEN Q. Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks[J].
Light:
Science&
Applications, 2022, 11(8): 1639-1642.
|
[6] |
CHEN G A. Fourier Ptychographic Imaging; A MATLAB tutorial[M]. ISBN: 978-1-6817-4273-1. IOP ebooks. Bristol, UK: IOP Publishing, 2016
|
[7] |
MAIT J N, EULISS G W, ATHALE R A. Computational imaging[J].
Advances in Optics and Photonics, 2018, 10(2): 409.
doi:10.1364/AOP.10.000409
|
[8] |
左超, 陈钱. 计算光学成像: 何来, 何处, 何去, 何从?[J]. 红外与 工程,2022,51(2):20220110.
doi:10.3788/IRLA20220110
ZUO CH, CHEN Q. Computational optical imaging: An overview[J].
Infrared and Laser Engineering, 2022, 51(2): 20220110. (in Chinese)
doi:10.3788/IRLA20220110
|
[9] |
SHANNON C E. A mathematical theory of communication[J].
The Bell System Technical Journal, 1948, 27(3): 379-423.
doi:10.1002/j.1538-7305.1948.tb01338.x
|
[10] |
韩申生, 胡晨昱. 信息光学成像研究回顾、现状与展望(特邀)[J]. 红外与 工程,2022,51(1):20220017.
doi:10.3788/IRLA20220017
HAN SH SH, HU CH Y. Review, current status and prospect of researches on information optical imaging (
Invited)[J].
Infrared and Laser Engineering, 2022, 51(1): 20220017. (in Chinese)
doi:10.3788/IRLA20220017
|
[11] |
HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J].
Optics Letters, 1994, 19(11): 780-782.
doi:10.1364/OL.19.000780
|
[12] |
RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J].
Nature Methods, 2006, 3(10): 793-796.
doi:10.1038/nmeth929
|
[13] |
BETZIG E, PATTERSON G H, SOUGRAT R,
et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution[J].
Science, 2006, 313(5793): 1642-1645.
doi:10.1126/science.1127344
|
[14] |
MOERNER W E, DAVID P. Methods of single-molecule fluorescence spectroscopy and microscopy[J].
Review of Scientific instruments, 2003, 74(8): 3597-3619.
|
[15] |
LUKOSZ W. Optical Systems with Resolving Powers Exceeding the Classical Limit[J].
JOSA, 1966, 56(11): 1463-1471.
doi:10.1364/JOSA.56.001463
|
[16] |
LUKOSZ W. Optical Systems with Resolving Powers Exceeding the Classical Limit. II[J].
JOSA, 1967, 57(7): 932-941.
doi:10.1364/JOSA.57.000932
|
[17] |
PAPOULIS A. Generalized sampling expansion[J].
IEEE Transactions on Circuits and Systems, 1977, 24(11): 652-654.
doi:10.1109/TCS.1977.1084284
|
[18] |
BROWN J. Multi-channel sampling of low-pass signals[J].
IEEE Transactions on Circuits and Systems, 1981, 28(2): 101-106.
doi:10.1109/TCS.1981.1084954
|
[19] |
AIRY G B. On the Diffraction of an Object-glass with Circular Aperture[J].
Transactions of the Cambridge Philosophical Society, 1835, 5: 283.
|
[20] |
RAYLEIGH. XV. On the theory of optical images, with special reference to the microscope[J].
The London,
Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 1896, 42(255): 167-195.
doi:10.1080/14786449608620902
|
[21] |
RAYLEIGH. XXXI. Investigations in optics, with special reference to the spectroscope[J].
The London,
Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 1879, 8(49): 261-274.
doi:10.1080/14786447908639684
|
[22] |
ABBE E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung[J].
Archiv für mikroskopische Anatomie,
IX, 1873: 413-468.
|
[23] |
SPARROW C M. On spectroscopic resolving power[J].
The Astrophysical Journal, 1916, 44: 76.
doi:10.1086/142271
|
[24] |
GOODMAN J W.
Introduction to Fourier Optics[M]. Roberts and Company Publishers, 2005.
|
[25] |
GOODMAN J W.
Statistical optics[M]. Wiley classics library ed. New York: Wiley, 2000.
|
[26] |
ZUO C, LI J, SUN J,
et al. Transport of intensity equation: a tutorial[J].
Optics and Lasers in Engineering, 2020, 135: 106187.
doi:10.1016/j.optlaseng.2020.106187
|
[27] |
FAN Y, LI J, LU L,
et al. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)[J].
PhotoniX, 2021, 2(1): 19.
doi:10.1186/s43074-021-00040-2
|
[28] |
ZUO C, SUN J, LI J,
et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J].
Scientific Reports, 2017, 7(1): 7654.
doi:10.1038/s41598-017-06837-1
|
[29] |
SHEPPARD C J R. Partially coherent microscope imaging system in phase space: effect of defocus and phase reconstruction[J].
Journal of the Optical Society of America A, 2018, 35(11): 1846.
doi:10.1364/JOSAA.35.001846
|
[30] |
Phase retrieval from series of images obtained by defocus variation[J].
Optics Communications, 2001, 199(1-4): 65-75.https://doi.org/10.1016/S0030-4018(01)01556-5.
|
[31] |
FIENUP J R. Phase retrieval algorithms: a comparison[J].
Applied Optics, 1982, 21(15): 2758-2769.
doi:10.1364/AO.21.002758
|
[32] |
TEAGUE M R. Deterministic phase retrieval: a Green’s function solution[J].
JOSA, 1983, 73(11): 1434-1441.
doi:10.1364/JOSA.73.001434
|
[33] |
TIAN L, WALLER L. Quantitative differential phase contrast imaging in an LED array microscope[J].
Optics Express, 2015, 23(9): 11394-11403.
doi:10.1364/OE.23.011394
|
[34] |
FAN Y, SUN J, CHEN Q,
et al. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy[J].
Photonics Research, 2019, 7(8): 890-904.
doi:10.1364/PRJ.7.000890
|
[35] |
ZHENG G, HORSTMEYER R, YANG C. Wide-field, high-resolution Fourier ptychographic microscopy[J].
Nature Photonics, 2013, 7(9): 739-745.
doi:10.1038/nphoton.2013.187
|
[36] |
SUN J, ZUO C, ZHANG J,
et al.. High-speed Fourier ptychographic microscopy based on programmable annular illuminations[J].
Scientific Reports, 2018, 8(1)[2018-09-11]. http://www.nature.com/articles/s41598-018-25797-8.
|
[37] |
AKONDI V, CASTILLO S, VOHNSEN B. Digital pyramid wavefront sensor with tunable modulation[J].
Optics Express, 2013, 21(15): 18261.
doi:10.1364/OE.21.018261
|
[38] |
BURVALL A, DALY E, CHAMOT S R,
et al. Linearity of the pyramid wavefront sensor[J].
Optics Express, 2006, 14(25): 11925.
doi:10.1364/OE.14.011925
|
[39] |
ZUO C, SUN J, FENG S,
et al. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging[J].
Optics and Lasers in Engineering, 2016, 80: 24-31.
doi:10.1016/j.optlaseng.2015.12.012
|
[40] |
IGLESIAS I. Pyramid phase microscopy[J].
Optics Letters, 2011, 36(18): 3636.
doi:10.1364/OL.36.003636
|
[41] |
HOPKINS H H. On the Diffraction Theory of Optical Images[J].
Proceedings of the Royal Society A:
Mathematical,
Physical and Engineering Sciences, 1953, 217(1130): 408-432.
doi:10.1098/rspa.1953.0071
|
[42] |
STREIBL N. Three-dimensional imaging by a microscope[J].
JOSA A, 1985, 2(2): 121-127.
doi:10.1364/JOSAA.2.000121
|
[43] |
SHEPPARD C J. Defocused transfer function for a partially coherent microscope and application to phase retrieval[J].
JOSA A, 2004, 21(5): 828-831.
doi:10.1364/JOSAA.21.000828
|
[44] |
MTF - Modulation transfer function[EB/OL]. [2022-05-22].https://www.telescope-optics.net/mtf.htm.
|
[45] |
HORSTMEYER R, CHUNG J, OU X,
et al. Diffraction tomography with Fourier ptychography[J].
Optica, 2016, 3(8): 827-835.
doi:10.1364/OPTICA.3.000827
|
[46] |
ASAKURA T. Resolution of two unequally bright points with partially coherent light[J].
Nouvelle Revue d’
Optique, 1974, 5(3): 169-177.
doi:10.1088/0335-7368/5/3/304
|
[47] |
AERT S V, DYCK D V, DEKKER A J den. Resolution of coherent and incoherent imaging systems reconsidered - Classical criteria and a statistical alternative[J].
Optics Express, 2006, 14(9): 3830-3839.
doi:10.1364/OE.14.003830
|
[48] |
VILLIERS G de, PIKE E R. The Limits of Resolution[M/OL]. Boca Raton: CRC Press, 2016. https://doi.org/10.1201/9781315366708.
|
[49] |
LATYCHEVSKAIA T. Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes[J].
Applied Optics, 2019, 58(13): 3597-3603.
doi:10.1364/AO.58.003597
|
[50] |
COTTE Y, TOY M F, DEPEURSINGE C. Beyond the lateral resolution limit by phase imaging[J].
Journal of biomedical optics, 2011, 16(10): 106007-106007.
doi:10.1117/1.3640812
|
[51] |
HORSTMEYER R, HEINTZMANN R, POPESCU G,
et al. Standardizing the resolution claims for coherent microscopy[J].
Nature Photonics, 2016, 10(2): 68-71.
doi:10.1038/nphoton.2015.279
|
[52] |
SIGAL Y M, ZHOU R, ZHUANG X. Visualizing and discovering cellular structures with super-resolution microscopy[J].
Science, 2018, 361(6405): 880-887.
doi:10.1126/science.aau1044
|
[53] |
JERRI A J. The Shannon sampling theorem—Its various extensions and applications: A tutorial review[J].
Proceedings of the IEEE, 1977, 65(11): 1565-1596.
doi:10.1109/PROC.1977.10771
|
[54] |
HARDIE R. A Fast Image Super-Resolution Algorithm Using an Adaptive Wiener Filter[J].
IEEE Transactions on Image Processing, 2007, 16(12): 2953-2964.
doi:10.1109/TIP.2007.909416
|
[55] |
SJAARDEMA T A, SMITH C S, BIRCH G C. History and Evolution of the Johnson Criteria. SAND2015-6368[R/OL]. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), 2015[2022-05-22]. https://www.osti.gov/biblio/1222446.
|
[56] |
ROBINSON J, KINCH M, MARQUIS M,
et al.. Case for small pixels: system perspective and FPA challenge[C/OL]//
Image Sensing Technologies: Materials, Devices, Systems, and Applications: 9100. SPIE, 2014: 73-81[2022-05-22]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9100/91000I/Case-for-small-pixels-system-perspective-and-FPA-challenge/10.1117/12.2054452.full.
|
[57] |
张佳琳, 陈钱, 张翔宇, 等. 无透镜片上显微成像技术: 理论、发展与应用[J]. 红外与 工程,2019,48(6):0603009.
doi:10.3788/IRLA201948.0603009
ZHANG J L, CHEN Q, ZHANG X Y,
et al. Lens-free on-chip microscopy:theory, advances, and applications[J].
Infrared and Laser Engineering, 2019, 48(6): 0603009. (in Chinese)
doi:10.3788/IRLA201948.0603009
|
[58] |
BISHARA W, SU T W, COSKUN A F,
et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J].
Optics Express, 2010, 18(11): 11181.
doi:10.1364/OE.18.011181
|
[59] |
SUN J, CHEN Q, ZHANG Y,
et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J].
Optics Express, 2016, 24(14): 15765.
doi:10.1364/OE.24.015765
|
[60] |
FAN Y, SUN J, CHEN Q,
et al. Wide-field anti-aliased quantitative differential phase contrast microscopy[J].
Optics Express, 2018, 26(19): 25129.
doi:10.1364/OE.26.025129
|
[61] |
SHANNON C E. Communication in the Presence of Noise[J].
Proceedings of the IRE, 1949, 37(1): 10-21.
doi:10.1109/JRPROC.1949.232969
|
[62] |
V. LAUVE M. Die Freiheitsgrade von Strahlenbündeln[J].
Annalen der Physik, 1914, 349(16): 1197-1212.
doi:10.1002/andp.19143491606
|
[63] |
GABOR D. IV Light and Information. This article is the substance of a Ritchie lecture, delivered by the author on March 2, 1951 at the University of Edinburgh. The contents of the lecture became known to a wider audience through the distribution of a limited number of mimeographed notes, which have since become widely quoted in the literature. The wish has been often expressed that a permanent record of the lecture should be made generally available. We are glad to be able to meet this wish[M/OL]//WOLF E. Progress in Optics: 1. Elsevier, 1961: 109-153[2022-05-22]. https://www.sciencedirect.com/science/article/pii/S0079663808706097.
|
[64] |
GREIVENKAMP J E. Field Guide to Geometrical Optics[M/OL]. 1000 20th Street, Bellingham, WA 98227-0010 USA: SPIE, 2004[2022-05-22]. http://link.aip.org/link/doi/10.1117/3.547461.
|
[65] |
FRANCIA G T di. Resolving Power and Information[J].
JOSA, 1955, 45(7): 497-501.
doi:10.1364/JOSA.45.000497
|
[66] |
LOHMANN A W, DORSCH R G, MENDLOVIC D,
et al. Space–bandwidth product of optical signals and systems[J].
JOSA A, 1996, 13(3): 470-473.
doi:10.1364/JOSAA.13.000470
|
[67] |
SLEPIAN D, POLLAK H O. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty — I[J].
Bell System Technical Journal, 1961, 40(1): 43-63.
doi:10.1002/j.1538-7305.1961.tb03976.x
|
[68] |
LANDAU H J, POLLAK H O. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty — II[J].
Bell System Technical Journal, 1961, 40(1): 65-84.
doi:10.1002/j.1538-7305.1961.tb03977.x
|
[69] |
FRANCIA G T di. Degrees of Freedom of an Image[J].
JOSA, 1969, 59(7): 799-804.
doi:10.1364/JOSA.59.000799
|
[70] |
TESTORF M E, HENNELLY B M, OJEDA-CASTAÑEDA J. Phase-space optics: fundamentals and applications[M/OL]. New York: McGraw-Hill, 2010[2019-05-10]. http://accessengineeringlibrary.com/browse/phase-space-optics-fundamentals-and-applications.
|
[71] |
WIGNER E. On the Quantum Correction For Thermodynamic Equilibrium[J].
Physical Review, 1932, 40(5): 749-759.
doi:10.1103/PhysRev.40.749
|
[72] |
DOLIN L. Beam description of weakly-inhomogeneous wave fields[J].
Izv Vyssh Uchebn Zaved Radiofiz, 1964, 7: 559-563.
|
[73] |
WALTHER A. Radiometry and Coherence[J].
JOSA, 1968, 58(9): 1256-1259.
doi:10.1364/JOSA.58.001256
|
[74] |
WALTHER A. Radiometry and coherence[J].
JOSA, 1973, 63(12): 1622-1623.
doi:10.1364/JOSA.63.001622
|
[75] |
WALTHER A. Propagation of the generalized radiance through lenses[J].
JOSA, 1978, 68(11): 1606-1610.
doi:10.1364/JOSA.68.001606
|
[76] |
BASTIAANS M J. A Frequency-domain Treatment of Partial Coherence[J].
Optica Acta:
International Journal of Optics, 1977, 24(3): 261-274.
doi:10.1080/713819536
|
[77] |
BASTIAANS M J. The Wigner distribution function applied to optical signals and systems[J].
Optics Communications, 1978, 25(1): 26-30.
doi:10.1016/0030-4018(78)90080-9
|
[78] |
BASTIAANS M J. The wigner distribution function and Hamilton’s characteristics of a geometric-optical system[J].
Optics Communications, 1979, 30(3): 321-326.
doi:10.1016/0030-4018(79)90361-4
|
[79] |
BASTIAANS M J. Transport Equations for the Wigner Distribution Function[J].
Optica Acta:
International Journal of Optics, 1979, 26(10): 1265-1272.
doi:10.1080/713819904
|
[80] |
BASTIAANS M J. Wigner distribution function and its application to first-order optics[J].
JOSA, 1979, 69(12): 1710-1716.
doi:10.1364/JOSA.69.001710
|
[81] |
BASTIAANS M J. Transport Equations for the Wigner Distribution Function in an Inhomogeneous and Dispersive Medium[J].
Optica Acta:
International Journal of Optics, 1979: [2021-02-18
doi:10.1080/713819921
|
[82] |
BASTIAANS M J. The Wigner Distribution Function of Partially Coherent Light[J].
Optica Acta:
International Journal of Optics, 1981: [2021-02-18
doi:10.1080/713820722
|
[83] |
BASTIAANS M J. Application of the Wigner distribution function to partially coherent light[J].
Journal of the Optical Society of America A, 1986, 3(8): 1227.
doi:10.1364/JOSAA.3.001227
|
[84] |
ZHENGYUN ZHANG, LEVOY M. Wigner distributions and how they relate to the light field[C/OL]//
2009 IEEE International Conference on Computational Photography (ICCP). 2009: 1-10. https://doi.org/10.1109/ICCPHOT.2009.5559007.
|
[85] |
DRAGOMAN D. Phase-space interferences as the source of negative values of the Wigner distribution function[J].
JOSA A, 2000, 17(12): 2481-2485.
doi:10.1364/JOSAA.17.002481
|
[86] |
TESTORF M E, FIDDY M A. Superresolution Imaging—Revisited[M/OL]//Advances in Imaging and Electron Physics: 163. Elsevier, 2010: 165-218[2022-05-16]. https://linkinghub.elsevier.com/retrieve/pii/S1076567010630054.
|
[87] |
TESTORF M. Phase-Space Optics and Modern Imaging Systems[J]. 2011: 67.
|
[88] |
MENDLOVIC D, LOHMANN A W. Space–bandwidth product adaptation and its application to superresolution: fundamentals[J].
JOSA A, 1997, 14(3): 558-562.
doi:10.1364/JOSAA.14.000558
|
[89] |
MENDLOVIC D, LOHMANN A W, ZALEVSKY Z. Space–bandwidth product adaptation and its application to superresolution: examples[J].
JOSA A, 1997, 14(3): 563-567.
doi:10.1364/JOSAA.14.000563
|
[90] |
NEIFELD M A. Information, resolution, and space–bandwidth product[J].
Optics Letters, 1998, 23(18): 1477-1479.
doi:10.1364/OL.23.001477
|
[91] |
ZHENG G, OU X, HORSTMEYER R,
et al. Fourier Ptychographic Microscopy: A Gigapixel Superscope for Biomedicine[J].
Optics and Photonics News, 2014, 25(4): 26-33.
doi:10.1364/OPN.25.4.000026
|
[92] |
SUN J, ZHANG J, CHEN Q,
et al. Fourier ptychographic microscopy theory advances and applications[J].
Acta Optica Sinica, 2016, 36(10): 1011005.
doi:10.3788/AOS201636.1011005
|
[93] |
TIAN L, LIU Z, YEH L H,
et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J].
Optica, 2015, 2(10): 904.
doi:10.1364/OPTICA.2.000904
|
[94] |
SUN J, CHEN Q, ZHANG J,
et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography[J].
Optics Letters, 2018, 43(14): 3365.
doi:10.1364/OL.43.003365
|
[95] |
ZALEVSKY Z, MENDLOVIC D, LOHMANN A W. IV Optical systems with improved resolving power[M/OL]//WOLF E. Progress in Optics: 40. Elsevier, 2000: 271-341[2022-11-20]. https://www.sciencedirect.com/science/article/pii/S0079663800800323.
|
[96] |
BACHL A, LUKOSZ W. Experiments on superresolution imaging of a reduced object field[J].
JOSA, 1967, 57(2): 163-169.
doi:10.1364/JOSA.57.000163
|
[97] |
陶纯堪, 陶纯匡. 光学信息论[M]. 科学出版社, 1999[2022-05-22].
TAO C K, TAO C K.
Optical Information Theory[M]. Science Press, 1999[2022-05-22].
|
[98] |
ZALESVKY Z.
Super Resolved Imaging in Wigner-Based Phase Space[M]//Phase-Space Optics: Fundamentals and Applications. McGraw-Hill New York, 2009: 193-216.
|
[99] |
ZALEVSKY Z, MENDLOVIC D, LOHMANN A W. Understanding superresolution in Wigner space[J].
JOSA A, 2000, 17(12): 2422-2430.
doi:10.1364/JOSAA.17.002422
|
[100] |
BROWN W M. Synthetic Aperture Radar[J].
IEEE Transactions on Aerospace and Electronic Systems, 1967, AES-3(2): 217-229.
doi:10.1109/TAES.1967.5408745
|
[101] |
LUCKE R L, RICKARD L J, BASHKANSKY M,
et al.. Synthetic aperture ladar (SAL): fundamental theory, design equations for a satellite system, and laboratory demonstration[R]. NAVAL RESEARCH LAB WASHINGTON DC, 2002.
|
[102] |
BASHKANSKY M, LUCKE R L, FUNK E,
et al. Two-dimensional synthetic aperture imaging in the optical domain[J].
Optics Letters, 2002, 27(22): 1983.
doi:10.1364/OL.27.001983
|
[103] |
BECK S M, BUCK J R, BUELL W F,
et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J].
Applied Optics, 2005, 44(35): 7621.
doi:10.1364/AO.44.007621
|
[104] |
GARCÍA J, MICÓ V, GARCÍA-MARTÍNEZ P,
et al.. Synthetic Aperture Superresolution by Structured Light Projection[C/OL]//
AIP Conference Proceedings: 860. Toledo (Spain): AIP, 2006: 136-145[2019-06-05]. http://aip.scitation.org/doi/abs/10.1063/1.2361214.
|
[105] |
GARCÍA J, ZALEVSKY Z, FIXLER D. Synthetic aperture superresolution by speckle pattern projection[J].
Optics Express, 2005, 13(16): 6073.
doi:10.1364/OPEX.13.006073
|
[106] |
RICHARD B. Principles of synthetic aperture radar[J].
Surveys in Geophysics, 2000, 21(2): 147-157.
|
[107] |
KOCH B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment[J].
ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(6): 581-590.
doi:10.1016/j.isprsjprs.2010.09.001
|
[108] |
HORSTMEYER R, CHEN R Y, OU X,
et al. Solving ptychography with a convex relaxation[J].
New Journal of Physics, 2015, 17(5): 053044.
doi:10.1088/1367-2630/17/5/053044
|
[109] |
YEH L H, DONG J, ZHONG J,
et al. Experimental robustness of Fourier ptychography phase retrieval algorithms[J].
Optics Express, 2015, 23(26): 33214.
doi:10.1364/OE.23.033214
|
[110] |
ZUO C, SUN J, CHEN Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J].
Optics Express, 2016, 24(18): 20724.
doi:10.1364/OE.24.020724
|
[111] |
HOLLOWAY J, ASIF M S, SHARMA M K,
et al.. Toward Long Distance, Sub-diffraction Imaging Using Coherent Camera Arrays[J]. arXiv: 1510.08470 [physics], 2015[2019-12-18]. http://arxiv.org/abs/1510.08470.
|
[112] |
HOLLOWAY J, WU Y, SHARMA M K,
et al. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography[J].
Science Advances, 2017, 3(4): e1602564.
doi:10.1126/sciadv.1602564
|
[113] |
KENDRICK R L, DUNCAN A, OGDEN C,
et al.. Segmented Planar Imaging Detector for EO Reconnaissance[C]//
Imaging and Applied Optics. Arlington, Virginia: OSA, 2013: CM4C. 1[2021-03-10].
|
[114] |
KENDRICK R L, DUNCAN A, OGDEN C,
et al.. Flat-panel space-based space surveillance sensor[C]//
Advanced maui optical and space surveillance technologies conference. 2013: E45.
|
[115] |
KATZ B, ROSEN J. Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements[J].
Optics Express, 2010, 18(2): 962-972.
doi:10.1364/OE.18.000962
|
[116] |
陈钱. 先进夜视成像技术发展探讨[J]. 红外与 工程,2022,51(2):20220128.
CHEN Q. Discussions on the development of advanced night vision imaging technology[J].
Infrared and Laser Engineering, 2022, 51(2): 20220128. (in Chinese)
|
[117] |
GUSTAFSSON M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J].
Journal of microscopy, 2000, 198(2): 82-87.
doi:10.1046/j.1365-2818.2000.00710.x
|
[118] |
EGGELING C, WILLIG K I, SAHL S J,
et al. Lens-based fluorescence nanoscopy[J].
Quarterly reviews of biophysics, 2015, 48(2): 178-243.
doi:10.1017/S0033583514000146
|
[119] |
KNER P, CHHUN B B, GRIFFIS E R,
et al. Super-resolution video microscopy of live cells by structured illumination[J].
Nature methods, 2009, 6(5): 339.
doi:10.1038/nmeth.1324
|
[120] |
GUSTAFSSON M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J].
Proceedings of the National Academy of Sciences, 2005, 102(37): 13081-13086.
doi:10.1073/pnas.0406877102
|
[121] |
LI D, SHAO L, CHEN B C,
et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J].
Science, 2015, 349(6251): aab3500-aab3500.
doi:10.1126/science.aab3500
|
[122] |
MICÓ V, ZHENG J, GARCIA J,
et al. Resolution enhancement in quantitative phase microscopy[J].
Advances in Optics and Photonics, 2019, 11(1): 135.
doi:10.1364/AOP.11.000135
|
[123] |
GAO P, PEDRINI G, OSTEN W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J].
Optics Letters, 2013, 38(8): 1328.
doi:10.1364/OL.38.001328
|
[124] |
WICKER K, HEINTZMANN R. Resolving a misconception about structured illumination[J].
Nature Photonics, 2014, 8(5): 342-344.
doi:10.1038/nphoton.2014.88
|
[125] |
KLAR T A, JAKOBS S, DYBA M,
et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J].
Proceedings of the National Academy of Sciences, 2000, 97(15): 8206-8210.
doi:10.1073/pnas.97.15.8206
|
[126] |
HELL S W. Far-Field Optical Nanoscopy[J].
Science, 2007, 316(5828): 1153-1158.
doi:10.1126/science.1137395
|
[127] |
WILLIG K I, RIZZOLI S O, WESTPHAL V,
et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J].
Nature, 2006, 440(7086): 935.
doi:10.1038/nature04592
|
[128] |
HELL S W, SAHL S J, MARK B M
et al. The 2015 super-resolution microscopy roadmap[J].
Journal of Physics D:
Applied Physics, 2015, 48(44): 443001.
|
[129] |
HESS S T, GIRIRAJAN T P, MASON M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J].
Biophysical journal, 2006, 91(11): 4258-4272.
doi:10.1529/biophysj.106.091116
|
[130] |
DI FRANCIA G T. Super-gain antennas and optical resolving power[J].
Il Nuovo Cimento(
|
[131] |
MARTÍNEZ-CORRAL M, ANDRÉS P, OJEDA-CASTAÑEDA J,
et al. Tunable axial superresolution by annular binary filters. Application to confocal microscopy[J].
Optics Communications, 1995, 119(5-6): 491-498.
doi:10.1016/0030-4018(95)00380-Q
|
[132] |
SALES T R, MORRIS G M. Diffractive superresolution elements[J].
JOSA A, 1997, 14(7): 1637-1646.
doi:10.1364/JOSAA.14.001637
|
[133] |
SHEPPARD C, CALVERT G, WHEATLAND M. Focal distribution for superresolving toraldo filters[J].
JOSA A, 1998, 15(4): 849-856.
doi:10.1364/JOSAA.15.000849
|
[134] |
ZHANG Y. Design of three-dimensional superresolving binary amplitude filters by using the analytical method[J].
Optics Communications, 2007, 274(1): 37-42.
doi:10.1016/j.optcom.2007.01.062
|
[135] |
AHARONOV Y, ANANDAN J, POPESCU S,
et al. Superpositions of time evolutions of a quantum system and a quantum time-translation machine[J].
Physical review letters, 1990, 64(25): 2965.
doi:10.1103/PhysRevLett.64.2965
|
[136] |
BERRY M V. Evanescent and real waves in quantum billiards and Gaussian beams[J].
Journal of Physics A:
Mathematical and General, 1994, 27(11): L391.
doi:10.1088/0305-4470/27/11/008
|
[137] |
BERRY M. Faster than fourier[J].
Quantum Coherence and Reality, 1994: 55-65.
|
[138] |
BERRY M, DENNIS M. Natural superoscillations in monochromatic waves in D dimensions[J].
Journal of Physics A:
Mathematical and Theoretical, 2008, 42(2): 022003.
|
[139] |
DENNIS M R, HAMILTON A C, COURTIAL J. Superoscillation in speckle patterns[J].
Optics letters, 2008, 33(24): 2976-2978.
doi:10.1364/OL.33.002976
|
[140] |
HUANG K, YE H, TENG J,
et al. Optimization-free superoscillatory lens using phase and amplitude masks: Optimization-free Super-oscillatory Lens[J].
Laser&
Photonics Reviews, 2014, 8(1): 152-157.
doi:10.1002/lpor.201300123
|
[141] |
ROGERS E T F, QURAISHE S, ROGERS K S,
et al. Far-field unlabeled super-resolution imaging with superoscillatory illumination[J].
APL Photonics, 2020, 5(6): 066107.
doi:10.1063/1.5144918
|
[142] |
FERREIRA P J S, KEMPF A. Superoscillations: faster than the Nyquist rate[J].
IEEE transactions on signal processing, 2006, 54(10): 3732-3740.
doi:10.1109/TSP.2006.877642
|
[143] |
ZALEVSKY Z, GARCÍA-MARTÍNEZ P, GARCÍA J. Superresolution using gray level coding[J].
Optics express, 2006, 14(12): 5178-5182.
doi:10.1364/OE.14.005178
|
[144] |
STERN A, JAVIDI B. Sampling in the light of Wigner distribution[J].
JOSA A, 2004, 21(3): 360-366.
doi:10.1364/JOSAA.21.000360
|
[145] |
STERN A, JAVIDI B. Sampling in the light of Wigner distribution: errata[J].
JOSA A, 2004, 21(10): 2038-2038.
doi:10.1364/JOSAA.21.002038
|
[146] |
PAPOULIS A. Pulse compression, fiber communications, and diffraction: a unified approach[J].
JOSA A, 1994, 11(1): 3-13.
doi:10.1364/JOSAA.11.000003
|
[147] |
STERN A. Sampling of linear canonical transformed signals[J].
Signal Processing, 2006, 86(7): 1421-1425.
doi:10.1016/j.sigpro.2005.07.031
|
[148] |
UNSER M, ZERUBIA J. A generalized sampling theory without band-limiting constraints[J].
IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, 1998, 45(8): 959-969.
doi:10.1109/82.718806
|
[149] |
ROMBERG J. Imaging via compressive sampling[J].
IEEE Signal Processing Magazine, 2008, 25(2): 14-20.
doi:10.1109/MSP.2007.914729
|
[150] |
CANDÈS E J, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J].
IEEE Transactions on information theory, 2006, 52(2): 489-509.
doi:10.1109/TIT.2005.862083
|
[151] |
BRADY D J, CHOI K, MARKS D L,
et al. Compressive holography[J].
Optics express, 2009, 17(15): 13040-13049.
doi:10.1364/OE.17.013040
|
[152] |
TAKHAR D, LASKA J N, WAKIN M B,
et al.. A new compressive imaging camera architecture using optical-domain compression[C]//
Computational Imaging IV: 6065. SPIE, 2006: 43-52.
|
[153] |
GLASNER D, BAGON S, IRANI M. Super-resolution from a single image[C/OL]//
2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 349-356[2019-06-05]. http://ieeexplore.ieee.org/document/5459271/.
|
[154] |
HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C/OL]//
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015: 5197-5206[2019-06-05]. http://ieeexplore.ieee.org/document/7299156/.
|
[155] |
KWANG IN KIM, YOUNGHEE KWON. Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(6): 1127-1133.
doi:10.1109/TPAMI.2010.25
|
[156] |
WANG D, FU T, BI G,
et al. Long-Distance Sub-Diffraction High-Resolution Imaging Using Sparse Sampling[J].
Sensors, 2020, 20(11): 3116.
doi:10.3390/s20113116
|
[157] |
XIANG M, PAN A, ZHAO Y Y,
et al.. Coherent synthetic aperture imaging for visible remote sensing via reflective Fourier ptychography[J].
Optics Letters, 2021, 46(1): 29-32.
|
[158] |
BIONDI F. Recovery of partially corrupted SAR images by super-resolution based on spectrum extrapolation[J].
IEEE Geoscience and Remote Sensing Letters, 2016, 14(2): 139-143.
|
[159] |
BHATTACHARJEE S, SUNDARESHAN M K. Mathematical extrapolation of image spectrum for constraint-set design and set-theoretic superresolution[J].
JOSA A, 2003, 20(8): 1516-1527.
doi:10.1364/JOSAA.20.001516
|
[160] |
ELAD M, DATSENKO D. Example-based regularization deployed to super-resolution reconstruction of a single image[J].
The Computer Journal, 2009, 52(1): 15-30.
|
[161] |
BEVILACQUA M, ROUMY A, GUILLEMOT C,
et al. Single-image super-resolution via linear mapping of interpolated self-examples[J].
IEEE Transactions on image processing, 2014, 23(12): 5334-5347.
doi:10.1109/TIP.2014.2364116
|
[162] |
DONG C, LOY C C, HE K,
et al. Image super-resolution using deep convolutional networks[J].
IEEE transactions on pattern analysis and machine intelligence, 2015, 38(2): 295-307.
|
[163] |
ZOU Y, ZHANG L, LIU C,
et al. Super-resolution reconstruction of infrared images based on a convolutional neural network with skip connections[J].
Optics and Lasers in Engineering, 2021, 146: 106717.
doi:10.1016/j.optlaseng.2021.106717
|
[164] |
B. Wang, Y. Zou, L. Zhang, Y. Hu, H. Yan, C. Zuo,
et al. Low-light-level image super-resolution reconstruction based on a multi-scale features extraction network[J].
Photonics, 2021, 8(8): 321.
doi:10.3390/PHOTONICS8080321
|
[165] |
WANG B, ZOU Y, ZHANG L,
et al. Multimodal super-resolution reconstruction of infrared and visible images via deep learning[J].
Optics and Lasers in Engineering, 2022, 156: 107078.
doi:10.1016/j.optlaseng.2022.107078
|
[166] |
DONG C, LOY C C, HE K,
et al. Image Super-Resolution Using Deep Convolutional Networks[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
doi:10.1109/TPAMI.2015.2439281
|
[167] |
DONG C, LOY C C, HE K,
et al.. Learning a Deep Convolutional Network for Image Super-Resolution[C/OL]//
FLEET D, PAJDLA T, SCHIELE B, et al. Computer Vision – ECCV 2014. Cham: Springer International Publishing, 2014: 184-199.https://doi.org/10.1007/978-3-319-10593-2_13.
|
[168] |
CHAKRABARTI A. A Neural Approach to Blind Motion Deblurring[C/OL]//
LEIBE B, MATAS J, SEBE N, et al. Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 221-235. https://doi.org/10.1007/978-3-319-46487-9_14.
|
[169] |
HE K, ZHANG X, REN S,
et al.. Deep Residual Learning for Image Recognition[C/OL]//
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778[2022-11-20]. https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.
|
[170] |
SHOCHER A, COHEN N, IRANI M. “Zero-Shot” Super-Resolution using Deep Internal Learning[J]. arXiv: 1712.06087 [cs, eess], 2017[2021-12-17]. http://arxiv.org/abs/1712.06087.
|
[171] |
ZHANG K, VAN GOOL L, TIMOFTE R. Deep Unfolding Network for Image Super-Resolution[C/OL]//
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 3214-3223[2021-12-17]. https://ieeexplore.ieee.org/document/9157092/.
|
[172] |
LUO Z, HUANG Y, LI S,
et al.. End-to-end Alternating Optimization for Blind Super Resolution[J]. arXiv: 2105.06878 [cs], 2021[2021-10-22]. http://arxiv.org/abs/2105.06878.
|
[173] |
Lim B, Son S, Kim H,
et al.. Enhanced Deep Residual Networks for Single Image Super-Resolution: IEEE, 10.1109/CVPRW.2017.151[P]. 2017.
|
[174] |
HE K, ZHANG X, REN S,
et al.. Deep residual learning for image recognition[C]//
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
|
[175] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//
International Conference on Medical image computing and computer-assisted intervention. Springer, 2015: 234-241.
|
[176] |
GANDELSMAN Y, SHOCHER A, IRANI M. “Double-DIP”: Unsupervised Image Decomposition via Coupled Deep-Image-Priors[C/OL]//2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 11018-11027[2021-12-24]. https://ieeexplore.ieee.org/document/8954420/.
|
[177] |
KIM S Y, SIM H, KIM M. KOALAnet: Blind Super-Resolution using Kernel-Oriented Adaptive Local Adjustment[C]. 10.48550/arXiv.2012.081032020.
|
[178] |
ZHANG K, ZUO W, GU S,
et al.. Learning Deep CNN Denoiser Prior for Image Restoration[C/OL]//2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE, 2017: 2808-2817[2022-04-27]. http://ieeexplore.ieee.org/document/8099783/.
|
[179] |
TAO G, JI X, WANG W,
et al.. Spectrum-to-Kernel Translation for Accurate Blind Image Super-Resolution[A]. Advances in Neural Information Processing Systems[C].
Curran Associates, Inc., 2021, 34: 22643-22654.
|
[180] |
ZHANG L J, GU K, VAN GOOL S, L.,
et al.. Flow based kernel prior with application to blind super-resolution[C].
IEEE Conference on Computer Vision and Pattern Recognition(
CVPR) . 2021: 10601–10610.
|
[181] |
LI X, SUO J, ZHANG W,
et al.. Universal and Flexible Optical Aberration Correction Using Deep-Prior Based Deconvolution[C/OL]//
2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2021: 2593-2601[2022-04-26]. https://ieeexplore.ieee.org/document/9710104/.
|
[182] |
CAI J, ZENG H, YONG H,
et al.. Toward Real-World Single Image Super-Resolution: A New Benchmark and a New Model[C/OL]//
2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019: 3086-3095[2021-10-22]. https://ieeexplore.ieee.org/document/9009805/.
|
[183] |
WANG X, XIE L, DONG C,
et al.. Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data[C/OL]//
2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Montreal, BC, Canada: IEEE, 2021: 1905-1914[2022-04-25]. https://ieeexplore.ieee.org/document/9607421/.
|
[184] |
NAZERI K, THASARATHAN H, EBRAHIMI M. Edge-Informed Single Image Super-Resolution[J]. arXiv: 1909.05305 [cs, eess], 2019[2021-02-24]. http://arxiv.org/abs/1909.05305.
|
[185] |
UNSER M, ALDROUBI A. A general sampling theory for nonideal acquisition devices[J].
IEEE Transactions on Signal Processing, 1994, 42(11): 2915-2925.
doi:10.1109/78.330352
|
[186] |
VANDEWALLE P, SÜSSTRUNK S, VETTERLI M. A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution[J].
EURASIP Journal on Advances in Signal Processing, 2006, 2006(1)[2019-06-05]. https://asp-eurasipjournals.springeropen.com/articles/10.1155/ASP/2006/71459.
|
[187] |
NGUYEN N, MILANFAR P. A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution)[J].
Circuits Systems and Signal Processing, 2000, 19(4): 321-338.
doi:10.1007/BF01200891
|
[188] |
IRANI M, PELEG S. Improving resolution by image registration[J].
CVGIP:
Graphical Models and Image Processing, 1991, 53(3): 231-239.
doi:10.1016/1049-9652(91)90045-L
|
[189] |
CHEN J, LI Y, CAO L. Research on region selection super resolution restoration algorithm based on infrared micro-scanning optical imaging model[J].
Scientific Reports, 2021, 11(1): 1-8.
doi:10.1038/s41598-020-79139-8
|
[190] |
ZHANG X, HUANG W, XU M,
et al. Super-resolution imaging for infrared micro-scanning optical system[J].
Optics express, 2019, 27(5): 7719-7737.
doi:10.1364/OE.27.007719
|
[191] |
DAI S sheng, LIU J song, XIANG H yan,
et al. Super-resolution reconstruction of images based on uncontrollable microscanning and genetic algorithm[J].
Optoelectronics Letters, 2014, 10(4): 313-316.
doi:10.1007/s11801-014-4067-x
|
[192] |
HUSZKA G, GIJS M A. Turning a normal microscope into a super-resolution instrument using a scanning microlens array[J].
Scientific reports, 2018, 8(1): 1-8.
|
[193] |
GUNTURK B K, ALTUNBASAK Y, MERSEREAU R M. Super-resolution reconstruction of compressed video using transform-domain statistics[J].
IEEE Transactions on Image Processing, 2004, 13(1): 33-43.
doi:10.1109/TIP.2003.819221
|
[194] |
CABANSKI W A, BREITER R, MAUK K H,
et al.. Miniaturized high-performance starring thermal imaging system[C]//
Infrared Detectors and Focal Plane Arrays VI: International Society for Optics and Photonics, 2000: 208-219.
|
[195] |
WANG B, ZUO C, SUN J,
et al.. A computational super-resolution technique based on coded aperture imaging[C/OL]//
PETRUCCELLI J C, TIAN L, PREZA C. Computational Imaging V. Online Only, United States: SPIE, 2020: 25[2020-10-13].https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11396/2560579/A-computational-super-resolution-technique-based-on-coded-aperture-imaging/10.1117/12.2560579.full.
|
[196] |
PAN GIGA. High-Resolution images panoramic photography GigaPixel images[EB/OL]. [2021-03-08]. http://gigapan.com/.
|
[197] |
SAKO T, SEKIGUCHI T, SASAKI M,
et al. MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand[J].
Experimental Astronomy, 2008, 22(1): 51-66.
|
[198] |
Gaia (spacecraft)[EB/OL]//Wikipedia. (2021-02-22)[2021-03-08]. https://en.wikipedia.org/w/index.php ? title = Gaia (spacecraft) & oldid = 1008206925.
|
[199] |
VERA C. Rubin Observatory[EB/OL]//Wikipedia. (2021-03-05)[2021-03-08]. https://en.wikipedia.org/w/index.php ? title = Vera C. Rubin Observatory&oldid = 1010481905.
|
[200] |
ZHAO G, ZHAO Y H, CHU Y Q,
et al. LAMOST spectral survey—An overview[J].
Research in Astronomy and Astrophysics, 2012, 12(7): 723.
doi:10.1088/1674-4527/12/7/002
|
[201] |
ARGUS-IS[EB/OL]//Wikipedia. (2020-07-15)[2021-03-08]. https://en.wikipedia.org/w/index.php ? title = ARGUS-IS & oldid = 967762056.
|
[202] |
WILBURN B, JOSHI N, VAISH V,
et al. High-speed videography using a dense camera array[C/OL]//
Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.: 2. 2004: II-II. https://doi.org/10.1109/CVPR.2004.1315176.
|
[203] |
WILBURN B, JOSHI N, VAISH V,
et al.
High Performance Imaging Using Large Camera Arrays[M]//ACM SIGGRAPH 2005 Papers. 2005: 765-776.
|
[204] |
A 360 degree camera that sees in 3D (w/Video)[EB/OL]. [2021-03-08]. https://phys.org/news/2010-12-degree-camera-3d-video.html.
|
[205] |
COGAL O, AKIN A, SEYID K,
et al. A new omni-directional multi-camera system for high resolution surveillance[C]//
Mobile Multimedia/Image Processing, Security, and Applications2014: 9120. International Society for Optics and Photonics, 2014: 91200N.
|
[206] |
LAW N M, FORS O, RATZLOFF J,
et al. The Evryscope: design and performance of the first full-sky gigapixel-scale telescope[C]//
Ground-based and Airborne Telescopes VI: 9906. International Society for Optics and Photonics, 2016: 99061M.
|
[207] |
LAW N M, FORS O, RATZLOFF J,
et al. Evryscope science: exploring the potential of all-sky gigapixel-scale telescopes[J].
Publications of the Astronomical Society of the Pacific, 2015, 127(949): 234.
doi:10.1086/680521
|
[208] |
BRADY D J, HAGEN N. Multiscale lens design[J].
Optics express, 2009, 17(13): 10659-10674.
doi:10.1364/OE.17.010659
|
[209] |
BRADY D J. Focus in multiscale imaging systems[C].
Computational Optical Sensing and Imaging, 2012: CM2B-1.
|
[210] |
TREMBLAY E J, MARKS D L, BRADY D J,
et al. Design and scaling of monocentric multiscale imagers[J].
Applied Optics, 2012, 51(20): 4691-4702.
doi:10.1364/AO.51.004691
|
[211] |
MARKS D L, BRADY D J. Close-up imaging using microcamera arrays for focal plane synthesis[J].
Optical Engineering, 2011, 50(3): 033205.
doi:10.1117/1.3554389
|
[212] |
MARKS D L, TREMBLAY E J, FORD J E,
et al. Microcamera aperture scale in monocentric gigapixel cameras[J].
Applied Optics, 2011, 50(30): 5824-5833.
doi:10.1364/AO.50.005824
|
[213] |
MARKS D L, BRADY D J. Gigagon: a Monocentric Lens Design Imaging 40 Gigapixels[C/OL]//
Imaging Systems (2010), paper ITuC2. Optica Publishing Group, 2010: ITuC2[2022-11-20]. https://opg.optica.org/abstract.cfm?uri=IS-2010-ITuC2.
|
[214] |
SON H S, MARKS D L, HAHN J,
et al. Design of a spherical focal surface using close-packed relay optics[J].
Optics Express, 2011, 19(17): 16132-16138.
doi:10.1364/OE.19.016132
|
[215] |
SON H S, MARKS D L, TREMBLAY E,
et al.. A Multiscale, Wide Field, Gigapixel Camera[C/OL]//
Imaging and Applied Optics (2011), paper JTuE2. Optica Publishing Group, 2011: JTuE2[2022-11-20]. https://opg.optica.org/abstract.cfm?uri=COSI-2011-JTuE2.
|
[216] |
MARKS D L, LLULL P R, PHILLIPS Z,
et al. Characterization of the AWARE 10 two-gigapixel wide-field-of-view visible imager[J].
Applied optics, 2014, 53(13): C54-C63.
doi:10.1364/AO.53.000C54
|
[217] |
LLULL P, BANGE L, PHILLIPS Z,
et al. Characterization of the AWARE 40 wide-field-of-view visible imager[J].
Optica, 2015, 2(12): 1086-1089.
doi:10.1364/OPTICA.2.001086
|
[218] |
小科普. 超振荡以及在光学中的应用, 即突破衍射极限[EB/OL]//知乎专栏. [2022-05-22].
https://zhuanlan.zhihu.com/p/88964582.
Popular Science. Superoscillation and its application in optics: beyond the diffraction limit[EB/OL]. Zhihu. [2022-05-22].
https://zhuanlan.zhihu.com/p/88964582.
|
[219] |
GOODMAN J W. Holography Viewed from the Perspective of the Light Field Camera[M/OL]//OSTEN W. Fringe 2013. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014: 3-15[2022-05-16]. http://link.springer.com/10.1007/978-3-642-36359-7_1.
|
[220] |
GAO P, YUAN C. Resolution enhancement of digital holographic microscopy via synthetic aperture: a review[J].
Light:
Advanced Manufacturing, 2022, 3(1): 105-120.
doi:10.37188/lam.2022.006
|
[221] |
MICO V, ZALEVSKY Z, GARCÍA-MARTÍNEZ P,
et al. Synthetic aperture superresolution with multiple off-axis holograms[J].
JOSA A, 2006, 23(12): 3162-3170.
doi:10.1364/JOSAA.23.003162
|
[222] |
MICO V, ZALEVSKY Z, GARCÍA-MARTÍNEZ P,
et al. Superresolved imaging in digital holography by superposition of tilted wavefronts[J].
Applied Optics, 2006, 45(5): 822-828.
doi:10.1364/AO.45.000822
|
[223] |
GRANERO L, MICÓ V, ZALEVSKY Z,
et al. Superresolution imaging method using phase-shifting digital lensless Fourier holography[J].
Optics Express, 2009, 17(17): 15008-15022.
doi:10.1364/OE.17.015008
|
[224] |
MICÓ V, FERREIRA C, GARCÍA J. Surpassing digital holography limits by lensless object scanning holography[J].
Optics Express, 2012, 20(9): 9382-9395.
doi:10.1364/OE.20.009382
|
[225] |
MICO V, ZALEVSKY Z, GARCÍA J. Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution[J].
Optics Communications, 2008, 281(17): 4273-4281.
doi:10.1016/j.optcom.2008.04.079
|
[226] |
MICÓ V, GARCÍA J. Common-path phase-shifting lensless holographic microscopy[J].
Optics Letters, 2010, 35(23): 3919-3921.
doi:10.1364/OL.35.003919
|
[227] |
MICÓ V, ZALEVSKY Z, GARCIA J. Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator[J].
Optics Letters, 2012, 37(23): 4988-4990.
doi:10.1364/OL.37.004988
|
[228] |
CHOI W, FANG-YEN C, BADIZADEGAN K,
et al. Tomographic phase microscopy[J].
Nature Methods, 2007, 4(9): 717-719.
doi:10.1038/nmeth1078
|
[229] |
Mirsky S K, Shaked N T. First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution[J].
Optics Express, 2019, 27(19): 26708.
|
[230] |
MICÓ V, ZALEVSKY Z. Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging[J].
Journal of Biomedical Optics, 2010, 15(4): 046027.
doi:10.1117/1.3481142
|
[231] |
SANZ M, PICAZO-BUENO J A, GARCÍA J,
et al. Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm[J].
Optics Express, 2015, 23(16): 21352-21365.
doi:10.1364/OE.23.021352
|
[232] |
PICAZO-BUENO J Á, ZALEVSKY Z, GARCÍA J,
et al. Superresolved spatially multiplexed interferometric microscopy[J].
Optics Letters, 2017, 42(5): 927-930.
doi:10.1364/OL.42.000927
|
[233] |
MICO V, FERREIRA C, ZALEVSKY Z,
et al. Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one[J].
Optics Express, 2014, 22(12): 14929-14943.
doi:10.1364/OE.22.014929
|
[234] |
CHOWDHURY S, ELDRIDGE W J, WAX A,
et al. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy[J].
Biomedical Optics Express, 2017, 8(5): 2496.
doi:10.1364/BOE.8.002496
|
[235] |
COTTE Y, TOY F, JOURDAIN P,
et al. Marker-free phase nanoscopy[J].
Nature Photonics, 2013, 7(2): 113-117.
doi:10.1038/nphoton.2012.329
|
[236] |
GABAI H, SHAKED N T. Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints[J].
Optics Express, 2012, 20(24): 26906.
doi:10.1364/OE.20.026906
|
[237] |
GIRSHOVITZ P, SHAKED N T. Doubling the field of view in off-axis low-coherence interferometric imaging[J].
Light:
Science&
Applications, 2014, 3(3): e151.
doi:10.1038/lsa.2014.32
|
[238] |
FRENKLACH I, GIRSHOVITZ P, SHAKED N T. Off-axis interferometric phase microscopy with tripled imaging area[J].
Optics Letters, 2014, 39(6): 1525.
doi:10.1364/OL.39.001525
|
[239] |
OU X, ZHENG G, YANG C. Embedded pupil function recovery for Fourier ptychographic microscopy[J].
Optics Express, 2014, 22(5): 4960.
doi:10.1364/OE.22.004960
|
[240] |
SUN J, CHEN Q, ZHANG Y,
et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J].
Biomedical Optics Express, 2016, 7(4): 1336.
doi:10.1364/BOE.7.001336
|
[241] |
DONG S, SHIRADKAR R, NANDA P,
et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging[J].
Biomedical Optics Express, 2014, 5(6): 1757.
doi:10.1364/BOE.5.001757
|
[242] |
TIAN L, LI X, RAMCHANDRAN K,
et al. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope[J].
Biomedical Optics Express, 2014, 5(7): 2376-2389.
doi:10.1364/BOE.5.002376
|
[243] |
LI P, BATEY D J, EDO T B,
et al. Separation of three-dimensional scattering effects in tilt-series Fourier ptychography[J].
Ultramicroscopy, 2015, 158: 1-7.
doi:10.1016/j.ultramic.2015.06.010
|
[244] |
TIAN L, WALLER L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J].
Optica, 2015, 2(2): 104.
doi:10.1364/OPTICA.2.000104
|
[245] |
ZUO C, SUN J, LI J,
et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography[J].
Optics and Lasers in Engineering, 2020, 128: 106003.
doi:10.1016/j.optlaseng.2020.106003
|
[246] |
BIAN L, SUO J, SITU G,
et al. Content adaptive illumination for Fourier ptychography[J].
Optics Letters, 2014, 39(23): 6648-6651.
doi:10.1364/OL.39.006648
|
[247] |
HE X, LIU C, ZHU J. Single-shot Fourier ptychography based on diffractive beam splitting[J].
Optics Letters, 2018, 43(2): 214.
doi:10.1364/OL.43.000214
|
[248] |
LEE B, HONG J young, YOO D,
et al. Single-shot phase retrieval via Fourier ptychographic microscopy[J].
Optica, 2018, 5(8): 976-983.
doi:10.1364/OPTICA.5.000976
|
[249] |
ZHENG G, SHEN C, JIANG S,
et al. Concept, implementations and applications of Fourier ptychography[J].
Nature Reviews Physics, 2021, 3(3): 207-223.
doi:10.1038/s42254-021-00280-y
|
[250] |
PAN A, ZUO C, YAO B. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine[J].
Reports on Progress in Physics, 2020, 83(9): 096101.
doi:10.1088/1361-6633/aba6f0
|
[251] |
CUI X, LEE L M, HENG X,
et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[J].
Proceedings of the National Academy of Sciences, 2008, 105(31): 10670-10675.
doi:10.1073/pnas.0804612105
|
[252] |
XU W, JERICHO M H, MEINERTZHAGEN I A,
et al. Digital in-line holography for biological applications[J].
Proceedings of the National Academy of Sciences, 2001, 98(20): 11301-11305.
doi:10.1073/pnas.191361398
|
[253] |
SU T wei, SEO S, ERLINGER A,
et al. Towards Wireless Health: Lensless On-Chip Cytometry[J].
Optics and Photonics News, 2008, 19(12): 24-24.
doi:10.1364/OPN.19.12.000024
|
[254] |
ISIKMAN S, SEO S, SENCAN I,
et al.. Lensfree cell holography on a chip: From holographic cell signatures to microscopic reconstruction[C/OL]//
2009 IEEE LEOS Annual Meeting Conference Proceedings. 2009: 404-405.https://doi.org/10.1109/LEOS.2009.5343233.
|
[255] |
ZHENG G, LEE S A, ANTEBI Y,
et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)[J].
Proceedings of the National Academy of Sciences, 2011, 108(41): 16889-16894.
doi:10.1073/pnas.1110681108
|
[256] |
SEO S, SU T W K, TSENG D,
et al. Lensfree holographic imaging for on-chip cytometry and diagnostics[J].
Lab on a Chip, 2009, 9(6): 777-787.
doi:10.1039/B813943A
|
[257] |
GREENBAUM A, LUO W, SU T W,
et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy[J].
Nature Methods, 2012, 9(9): 889-895.
doi:10.1038/nmeth.2114
|
[258] |
ELSER V. Phase retrieval by iterated projections[J].
JOSA A, 2003, 20(1): 40-55.
doi:10.1364/JOSAA.20.000040
|
[259] |
GREENBAUM A, OZCAN A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy[J].
Optics Express, 2012, 20(3): 3129-3143.
doi:10.1364/OE.20.003129
|
[260] |
ZHANG Y, PEDRINI G, OSTEN W,
et al. Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm[J].
Optics Express, 2003, 11(24): 3234-3241.
doi:10.1364/OE.11.003234
|
[261] |
MUDANYALI O, TSENG D, OH C,
et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications[J].
Lab on a Chip, 2010, 10(11): 1417-1428.
doi:10.1039/C000453G
|
[262] |
LUO W, ZHANG Y, GÖRÖCS Z,
et al. Propagation phasor approach for holographic image reconstruction[J].
Scientific Reports, 2016, 6(1): 22738.
doi:10.1038/srep22738
|
[263] |
ZUO C, SUN J, ZHANG J,
et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J].
Optics Express, 2015, 23(11): 14314.
doi:10.1364/OE.23.014314
|
[264] |
GREENBAUM A, ZHANG Y, FEIZI A,
et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy[J].
Science Translational Medicine, 2014, 6(267): 267ra175-267ra175.
doi:10.1126/scitranslmed.3009850
|
[265] |
ZHANG J, SUN J, CHEN Q,
et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J].
Scientific Reports, 2017, 7(1): 11777.
doi:10.1038/s41598-017-11715-x
|
[266] |
LUO W, ZHANG Y, FEIZI A,
et al. Pixel super-resolution using wavelength scanning[J].
Light:
Science&
Applications, 2016, 5(4): e16060-e16060.
doi:10.1038/lsa.2016.60
|
[267] |
ZHANG J, CHEN Q, LI J,
et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning[J].
Optics Letters, 2018, 43(15): 3714-3717.
doi:10.1364/OL.43.003714
|
[268] |
BISHARA W, SIKORA U, MUDANYALI O,
et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array[J].
Lab on a Chip, 2011, 11(7): 1276.
doi:10.1039/c0lc00684j
|
[269] |
WU X, SUN J, ZHANG J,
et al. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging[J].
Optics Letters, 2021, 46(9): 2023.
doi:10.1364/OL.421869
|
[270] |
LI J, CHEN Q, SUN J,
et al. Optimal illumination pattern for transport-of-intensity quantitative phase microscopy[J].
Optics Express, 2018, 26(21): 27599.
doi:10.1364/OE.26.027599
|
[271] |
BULBUL A, VIJAYAKUMAR A, ROSEN J. Partial aperture imaging by systems with annular phase coded masks[J].
Optics Express, 2017, 25(26): 33315-33329.
doi:10.1364/OE.25.033315
|
[272] |
LI J, CHEN Q, ZHANG J,
et al. Efficient quantitative phase microscopy using programmable annular LED illumination[J].
Biomedical Optics Express, 2017, 8(10): 4687-4705.
doi:10.1364/BOE.8.004687
|
[273] |
PAPOULIS A. A new algorithm in spectral analysis and band-limited extrapolation[J].
IEEE Transactions on Circuits and Systems, 1975, 22(9): 735-742.
doi:10.1109/TCS.1975.1084118
|
[274] |
GERCHBERG R, SAXTON W. A practical algorithm for the determination of the phase from image and diffraction plane pictures[J].
Optik(
Jena)
|
[275] |
GERCHBERG R W. Phase determination from image and diffraction plane pictures in the electron microscope[J].
Optik, 1971, 34(3): 275-284.
|
[276] |
DONOHO D L, JOHNSTONE I M, HOCH J C,
et al. Maximum Entropy and the Nearly Black Object[J].
Journal of the Royal Statistical Society. Series B(
Methodological)
|
[277] |
SHIEH H M, BYRNE C L. Image reconstruction from limited Fourier data[J].
Journal of the Optical Society of America A, 2006, 23(11): 2732.
doi:10.1364/JOSAA.23.002732
|
[278] |
SHIEH H M, BYRNE C L, FIDDY M A. Image reconstruction: a unifying model for resolution enhancement and data extrapolation. Tutorial[J].
JOSA A, 2006, 23(2): 258-266.
doi:10.1364/JOSAA.23.000258
|
[279] |
MARCHESINI S, HE H, CHAPMAN H N,
et al. X-ray image reconstruction from a diffraction pattern alone[J].
Physical Review B, 2003, 68(14): 140101.
doi:10.1103/PhysRevB.68.140101
|
[280] |
SHIEH H M, HSU Y C, BYRNE C L,
et al. Resolution enhancement of imaging small-scale portions in a compactly supported function[J].
Journal of the Optical Society of America A, 2010, 27(2): 141.
doi:10.1364/JOSAA.27.000141
|
[281] |
LATYCHEVSKAIA T, FINK H W. Resolution enhancement in digital holography by self-extrapolation of holograms[J].
Optics Express, 2013, 21(6): 7726-7733.
doi:10.1364/OE.21.007726
|
[282] |
HUANG Z, CAO L. Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction[J].
Optics and Lasers in Engineering, 2020, 130: 106090.
doi:10.1016/j.optlaseng.2020.106090
|
[283] |
KOSAREV E L. Shannon’s superresolution limit for signal recovery[J].
Inverse Problems, 1990, 6(1): 55-76.
doi:10.1088/0266-5611/6/1/007
|
[284] |
NARIMANOV E. Resolution limit of label-free far-field microscopy[J].
Advanced Photonics, 2019, 1(05): 1.
doi:10.1117/1.AP.1.5.056003
|
[285] |
RADON J. On the determination of functions from their integral values along certain manifolds[J].
IEEE Transactions on Medical Imaging, 1986, 5(4): 170-176.
doi:10.1109/TMI.1986.4307775
|
[286] |
WOLF E. Three-dimensional structure determination of semi-transparent objects from holographic data[J].
Optics Communications, 1969, 1(4): 153-156.
doi:10.1016/0030-4018(69)90052-2
|
[287] |
CHARRIÈRE F, MARIAN A, MONTFORT F,
et al. Cell refractive index tomography by digital holographic microscopy[J].
Optics Letters, 2006, 31(2): 178.
doi:10.1364/OL.31.000178
|
[288] |
CHARRIÈRE F, PAVILLON N, COLOMB T,
et al. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba[J].
Optics Express, 2006, 14(16): 7005.
doi:10.1364/OE.14.007005
|
[289] |
SUNG Y, CHOI W, FANG-YEN C,
et al. Optical diffraction tomography for high resolution live cell imaging[J].
Optics Express, 2009, 17(1): 266-277.
doi:10.1364/OE.17.000266
|
[290] |
KIM K, YOON H, DIEZ-SILVA M,
et al. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography[J].
Journal of Biomedical Optics, 2013, 19(1): 011005.
doi:10.1117/1.JBO.19.1.011005
|
[291] |
SCHERMELLEH L, CARLTON P M, HAASE S,
et al.. Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy[J].
Science, 2008, 320(5881): 1332-1336.
|
[292] |
LI J, CHEN Q, SUN J,
et al. Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations[J].
Biomedical Optics Express, 2018, 9(6): 2526-2542.
doi:10.1364/BOE.9.002526
|
[293] |
ZHOU S, LI J, SUN J,
et al. Accelerated Fourier ptychographic diffraction tomography with sparse annular LED illuminations[J].
Journal of Biophotonics, 2022, 15(3): e202100272.
doi:10.1002/jbio.202100272
|
[294] |
ZHOU N, ZHOU N, LI J,
et al. Single-exposure 3D label-free microscopy based on color-multiplexed intensity diffraction tomography[J].
Optics Letters, 2022, 47(4): 969-972.
doi:10.1364/OL.442171
|
[295] |
LIM J, LEE K, JIN K H,
et al. Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography[J].
Optics Express, 2015, 23(13): 16933.
doi:10.1364/OE.23.016933
|
[296] |
HECHT B, SICK B, WILD U P,
et al. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications[J].
The Journal of Chemical Physics, 2000, 112(18): 7761-7774.
doi:10.1063/1.481382
|
[297] |
HAO XIANG, YANG QING, KUANG CUIFANG,
et al. Optical Super-Resolution Imaging Based on Frequency Shift[J].
Acta Optica Sinica, 2021, 41(1): 0111001.
doi:10.3788/AOS202141.0111001
|
[298] |
WEI F, LU D, SHEN H,
et al. Wide Field Super-Resolution Surface Imaging through Plasmonic Structured Illumination Microscopy[J].
Nano Letters, 2014, 14(8): 4634-4639.
doi:10.1021/nl501695c
|
[299] |
WEI F, LIU Z. Plasmonic Structured Illumination Microscopy[J].
Nano Letters, 2010, 10(7): 2531-2536.
doi:10.1021/nl1011068
|
[300] |
ZHOU Z, LIU W, HE J,
et al. Far-field super-resolution imaging by nonlinearly excited evanescent waves[J].
Advanced Photonics, 2021, 3(2): 025001.
doi:10.1117/1.AP.3.2.025001
|
[301] |
BARBASTATHIS G, OZCAN A, SITU G. On the use of deep learning for computational imaging[J].
Optica, 2019, 6(8): 921.
doi:10.1364/OPTICA.6.000921
|
[302] |
ZUO CHAO, FENG SHIJIE, ZHANG XIANGYU,
et al. Deep Learning Based Computational Imaging: Status, Challenges, and Future[J].
Acta Optica Sinica, 2020, 40(1): 0111003.
doi:10.3788/AOS202040.0111003
|
[303] |
ZUO C, QIAN J, FENG S,
et al. Deep learning in optical metrology: a review[J].
Light:
Science&
Applications, 2022, 11(1): 39.
doi:10.1038/s41377-022-00714-x
|
[304] |
WANG H, RIVENSON Y, JIN Y,
et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J].
Nature Methods, 2019, 16(1): 103-110.
doi:10.1038/s41592-018-0239-0
|
[305] |
RIVENSON Y, GÖRÖCS Z, GÜNAYDIN H,
et al. Deep learning microscopy[J].
Optica, 2017, 4(11): 1437-1443.
doi:10.1364/OPTICA.4.001437
|
[306] |
QIAO C, LI D, GUO Y,
et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy[J].
Nature Methods, 2021, 18(2): 194-202.
doi:10.1038/s41592-020-01048-5
|