Volume 15Issue 5
Sep. 2022
Turn off MathJax
Article Contents
PAN Qi-kun, MIAO Fang-chen, SI Hong-Li, SHEN Hui, GAO Fei, YU De-Yang, ZHANG Kuo, ZHANG Ran-ran, ZHAO Chong-Xiao, CHEN Fei, GUO Jin. Compact pulsed CO2 laser with wavelength automatic tuning[J]. Chinese Optics, 2022, 15(5): 1007-1012. doi: 10.37188/CO.2022-0107
Citation: PAN Qi-kun, MIAO Fang-chen, SI Hong-Li, SHEN Hui, GAO Fei, YU De-Yang, ZHANG Kuo, ZHANG Ran-ran, ZHAO Chong-Xiao, CHEN Fei, GUO Jin. Compact pulsed CO2laser with wavelength automatic tuning[J].Chinese Optics, 2022, 15(5): 1007-1012.doi:10.37188/CO.2022-0107

Compact pulsed CO2laser with wavelength automatic tuning

doi:10.37188/CO.2022-0107
Funds:Supported by National Key R&D Program of China (No. 2018YFE0203200); Science and Technology Cooperation Project between Jilin Province and Chinese Academy of Sciences (No. 2021SYHZ0028); State Key Laboratory of Laser Interaction with Matter Project (No. SKLLIM1914, SKLLIM2114); Youth Innovation Promotion Association, CAS (No. 2021216)
More Information
  • Corresponding author:panqikun2005@163.com
  • Received Date:28 May 2022
  • Rev Recd Date:27 Jun 2022
  • Available Online:12 Jul 2022
  • In order to meet the application requirements of airborne laser differential absorption lidar for small and lightweight light sources, a compact pulsed CO2laser is developed with automatic wavelength tuning. First, the aperture matching relationship between an RF waveguide intracavity beam and a free space optical chopper beam was studied, and a beam conversion system was designed with real focus on the intracavity. The influence of the chopper aperture on a laser pulse waveform was verified experimentally. Secondly, the wavelength tuning characteristics of CO2laser were studied, and the diffraction angle difference between adjacent laser spectral lines was analyzed. Tunable operation in the CO2laser was realized using a high-precision electric turntable and metal blazed grating. Finally, the integration of a compact automatic tuning pulsed CO2laser was completed using small lightweight modules. Experimental results indicate that the laser operates stably at 1 kHz with a pulse width of 350 ns and a peak power of 3.7 kW. There are 30 lines within 9.2~10.7 μm waveband. The total weight of the laser is 18 kg. It provides a miniaturized detection light source for airborne laser differential absorption lidar.

  • loading
  • [1]
    CAO ZH, WEI CH Y, CHENG X, et al. Ground fused silica processed by combined chemical etching and CO 2laser polishing with super-smooth surface and high damage resistance[J]. Optics Letters, 2020, 45(21): 6014-6017. doi:10.1364/OL.409857
    [2]
    高月娟, 陈飞, 潘其坤, 等. 用于超短脉冲CO 2 的半导体光开关理论建模与数值分析[J]. 中国光学,2020,13(3):577-585.

    GAO Y J, CHEN F, PAN Q K, et al. Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO 2laser[J]. Chinese Optics, 2020, 13(3): 577-585. (in Chinese)
    [3]
    袁志国, 马修真, 刘晓楠, 等. 利用可调谐 吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学,2020,13(2):281-289. doi:10.3788/co.20201302.0281

    YUAN ZH G, MA X ZH, LIU X N, et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289. (in Chinese) doi:10.3788/co.20201302.0281
    [4]
    FAN S Y, HEALY N. CO 2laser-based side-polishing of silica optical fibers[J]. Optics Letters, 2020, 45(15): 4128-4131. doi:10.1364/OL.397939
    [5]
    HE T, WEI CH Y, JIANG ZH G, et al. Numerical model and experimental demonstration of high precision ablation of pulse CO 2laser[J]. Chinese Optics Letters, 2018, 16(4): 041401. doi:10.3788/COL201816.041401
    [6]
    POLYANSKIY M N, POGORELSKY I V, BABZIEN M, et al. Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO 2amplifiers[J]. OSA Continuum, 2020, 3(3): 459-472. doi:10.1364/OSAC.381467
    [7]
    曾庆栋, 袁梦甜, 朱志恒, 等. 便携式 诱导击穿光谱最新研究进展[J]. 中国光学,2021,14(3):470-486. doi:10.37188/CO.2020-0093

    ZENG Q D, YUAN M T, ZHU ZH H, et al. Research progress on portable laser-induced breakdown spectroscopy[J]. Chinese Optics, 2021, 14(3): 470-486. (in Chinese) doi:10.37188/CO.2020-0093
    [8]
    RUAN P, PAN Q K, XIE J J, et al. Rapidly tunable pulsed CO 2laser based on acoustic-optic modulator[J]. Infrared Physics& Technology, 2018, 92: 299-303.
    [9]
    TEHRANI M K, MOHAMMAD M M, JAAFARI E, et al. Setting up a mobile Lidar (DIAL) system for detecting chemical warfare agents[J]. Laser Physics, 2015, 25(3): 035701. doi:10.1088/1054-660X/25/3/035701
    [10]
    PAL A, CLARK C D, SIGMAN M, et al. Differential absorption lidar CO 2laser system for remote sensing of TATP related gases[J]. Applied Optics, 2009, 48(4): B145-B150. doi:10.1364/AO.48.00B145
    [11]
    KARAPUZIKOV A I, PTASHNIK I V, SHERSTOV I V, et al. Modeling of helicopter-borne tunable TEA CO 2DIAL system employment for detection of methane and ammonia leakages[J]. Infrared Physics& Technology, 2000, 41(2): 87-96.
    [12]
    SZINICZ L. History of chemical and biological warfare agents[J]. Toxicology, 2005, 214(3): 167-181. doi:10.1016/j.tox.2005.06.011
    [13]
    BANDINI F, SUNDING T P, LINDE J, et al. Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: comparison of radar altimetry, LIDAR and photogrammetry techniques[J]. Remote Sensing of Environment, 2020, 237: 111487. doi:10.1016/j.rse.2019.111487
    [14]
    PODOSKI J H, SMITH T D, FINNEGAN D C, et al. Unmanned aerial system lidar survey of two breakwaters in the Hawaiian islands[J]. Coastal Engineering Proceedings, 2018, 1(36): 23. doi:10.9753/icce.v36.structures.23
    [15]
    XIE J J, PAN Q K, GUO R H, et al. Dynamical analysis of acousto-optically Q-switched CO 2laser[J]. Optics and Lasers in Engineering, 2012, 50(2): 159-164. doi:10.1016/j.optlaseng.2011.09.014
    [16]
    ZHANG Y CH, TIAN ZH SH, SUN ZH H, et al. Study of frequency stabilization for electro-optical Q-switched radio-frequency-excited waveguide CO 2laser using build-up time method[J]. Applied Optics, 2013, 52(16): 3732-3736. doi:10.1364/AO.52.003732
    [17]
    潘其坤, 陈飞, 石宁宁, 等. 声光调Q CO 2 器波长调谐理论分析与实验研究[J]. 红外与 工程,2017,46(7):0705002. doi:10.3788/IRLA201746.0705002

    PAN Q K, CHEN F, SHI N N, et al. Theoretical analysis and experimental research on tunable acousto-optic Q-switched CO 2laser[J]. Infrared and Laser Engineering, 2017, 46(7): 0705002. (in Chinese) doi:10.3788/IRLA201746.0705002
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views(582) PDF downloads(200) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map