Citation: | FAN Chen, LIU Jun, GAO Ming, LV Hong. Design of compound eye optical system with hexagonal band arrangement and common optical path[J].Chinese Optics, 2023, 16(1): 158-173.doi:10.37188/CO.2022-0116 |
In order to solve the challenges of low space utilization and small aperture size for the sub-eye in bionic compound eye systems, a design method for a large aperture compound eye system with a hexagonal band arrangement is proposed in this paper. Using the filling factor theory, taking the traditional curved surface circular arrangement as the control group, it is demonstrated that the hexagonal band arrangement model can effectively improve the space utilization of a large-aperture compound eye system. Aiming at the limited target information acquisition of a single-band compound eye system, an infrared dual-band common optical path imaging form was designed, supplemented by a two-color image sensor, which enhanced the multi-dimensional ability of the compound eye system to obtain information. At the same time, a mathematical model of the sub-aperture positioning of the hexagonal band arrangement is established. The bionic compound eye system is composed of 91 sub-apertures with an entrance pupil diameter of 16 mm, a focal length of 48 mm and a field of view of 9°. The combined total field of view of the sub-apertures is 96°×85°. The focal length of the relay system is 6.14 mm. In a temperature range of −40 °C~+60 °C, the sub-aperture and the relay systems basically have no influence from thermal differences. The cold reflection effect of the detector can be ignored. The simulation results show that the Root Mean Square (RMS) radius of each sub-channel is smaller than the airy spot and the optical distortion value of each sub-channel is less than 0.1%. The Modulation Transfer Function (MTF) of the edge sub-channel in the MWIR/LWIR band is above 0.5 at 17 lp/mm. The system has a compact structure and strong detection ability, and can be used for multi-target detection and recognition in complex environments.
[1] |
CAO A X, WANG J ZH, HUI P,
et al. Design and fabrication of a multifocal bionic compound eye for imaging[J].
Bioinspiration&
Biomimetics, 2018, 13(2): 026012.
|
[2] |
巩宪伟, 鱼卫星, 张红鑫, 等. 仿生复眼成像系统设计与制作的研究进展[J]. 中国光学,2013,6(1):34-45.
GONG X W, YU W X, ZHANG H X,
et al. Progress in design and fabrication of artificial compound eye optical systems[J].
Chinese Optics, 2013, 6(1): 34-45. (in Chinese)
|
[3] |
LAW N M, FORS O, WULFKEN P,
et al. The Evryscope: the first full-sky gigapixel-scale telescope[J].
Proceedings of SPIE, 2014, 9145: 91450Z.
|
[4] |
付跃刚, 赵宇, 刘智颖, 等. 基于视场拼接方法的仿生复眼光学系统设计[J]. 仪器仪表学报,2015,36(2):422-429.
doi:10.19650/j.cnki.cjsi.2015.02.022
FU Y G, ZHAO Y, LIU ZH Y,
et al. Design of the bionic compound eye optical system based on field splicing method[J].
Chinese Journal of Scientific Instrument, 2015, 36(2): 422-429. (in Chinese)
doi:10.19650/j.cnki.cjsi.2015.02.022
|
[5] |
田钰麒. 长波红外与可见光双波段复眼光学系统研究[D]. 长春: 长春理工大学, 2018: 18-27.
TIAN Y Q.
Research on dual-band compound eye optical system with LWIR and VIS[D]. Changchun: Changchun University of Science and Technology, 2018: 18-27. (in Chinese)
|
[6] |
王元元. 曲面仿生复眼成像系统设计及微加工技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019: 35-69.
WANG Y Y.
Design and micromachining technology of surface bionic compound eye imaging system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019: 35-69. (in Chinese)
|
[7] |
许黄蓉, 刘晋亨, 张远杰, 等. 无人机载型曲面仿生复眼成像测速系统[J]. 光子学报,2021,50(9):0911004.
doi:10.3788/gzxb20215009.0911004
XU H R, LIU J H, ZHANG Y J,
et al. UAV-borne biomimetic curved compound-eye imaging system for velocity measurement[J].
Acta Photonica Sinica, 2021, 50(9): 0911004. (in Chinese)
doi:10.3788/gzxb20215009.0911004
|
[8] |
于晓丹, 张远杰, 王元元, 等. 小型无人机载大视场复眼相机光学系统设计[J]. 光子学报,2019,48(7):0722003.
doi:10.3788/gzxb20194807.0722003
YU X D, ZHANG Y J, WANG Y Y,
et al. Optical design of a compound eye camera with a large-field of view for unmanned aerial vehicles[J].
Acta Photonica Sinica, 2019, 48(7): 0722003. (in Chinese)
doi:10.3788/gzxb20194807.0722003
|
[9] |
胡雪蕾, 高明, 陈阳. 大视场曲面仿生复眼光学系统设计[J]. 红外与 工程,2020,49(1):0114002.
HU X L, GAO M, CHEN Y,
et al. Design of curved bionic compound eye optical system with large field of view[J].
Infrared and Laser Engineering, 2020, 49(1): 0114002. (in Chinese)
|
[10] |
虞林瑶, 魏群, 张天翼, 等. 中波红外长焦距折反光学系统设计[J]. 中国光学,2015,8(2):234-240.
doi:10.3788/co.20150802.0234
YU L Y, WEI Q, ZHANG T Y,
et al. Design of long focal infrared catadioptric optical system for multi-guided system[J].
Chinese Optics, 2015, 8(2): 234-240. (in Chinese)
doi:10.3788/co.20150802.0234
|
[11] |
CHEN Y, GAO M, HU X L,
et al. Design of co-aperture wide spectrum compound eye optical system[J].
Acta Photonica Sinica, 2020, 49(3): 0322002.
doi:10.3788/gzxb20204903.0322002
|
[12] |
徐睆垚, 徐亮, 沈先春, 等. 基于红外多光谱相机分析长后焦距对无热化设计的影响[J]. 物理学报,2021,70(18):184201.
doi:10.7498/aps.70.20210217
XU H Y, XU L, SHEN X CH,
et al. Analysis of influence of long back focal length on athermal design based on infrared multispectral camera[J].
Acta Physica Sinica, 2021, 70(18): 184201. (in Chinese)
doi:10.7498/aps.70.20210217
|
[13] |
陈潇. 大相对孔径变焦红外光学系统无热化设计[J]. 红外技术,2021,43(12):1183-1187.
CHEN X. Athermalization of infrared zoom optical system with large relative aperture[J].
Infrared Technology, 2021, 43(12): 1183-1187. (in Chinese)
|
[14] |
单秋莎, 谢梅林, 刘朝晖, 等. 制冷型长波红外光学系统设计[J]. 中国光学,2022,15(1):72-78.
SHAN Q SH, XIE M L, LIU ZH H,
et al. Design of cooled long-wavelength infrared imaging optical system[J].
Chinese Optics, 2022, 15(1): 72-78. (in Chinese)
|
[15] |
李晓蕾, 高明. 小型化复合孔径双波段观瞄系统设计[J]. 红外与 工程,2022,51(4):20210549.
LI X L, GAO M. Design of miniaturized dual-band observation system with composite aperture[J].
Infrared and Laser Engineering, 2022, 51(4): 20210549. (in Chinese)
|