Citation: | ZHANG Ben-lei, YANG Fei, WANG Fu-guo, LU Bao-wei. Integrated optimization design of mirror semi-active support system based on Warping Harness[J].Chinese Optics, 2022, 15(5): 1066-1078.doi:10.37188/CO.2022-0121 |
The semi-active support is based on the semi-active optical technology, and the correction force is converted into a correction torque through a Warping Harness(WH) spring blade to correct the mirror low-order aberration introduced by error sources such as gravity and temperature. Aiming at the defects of traditional empirical design of mirrors, a new optimal design method for a mirror support system is proposed, that is, a comprehensive design optimization method of mirror support system based on structural size optimization combined with empirical design, and a set of semi-active mirror support systems based on WH is established. Firstly, the initial structure of the support system is designed according to the empirical formula; an L-shaped hollow WH spring blade is designed, and the nonlinear analysis and fatigue analysis are carried out to determine that the blade thickness is 2 mm and the service life is 1.2×106times. Then, the RMS value of the mirror surface in the vertical and horizontal states of the optical axis was reduced from 119 nm and 106 nm to 13.3 nm and 4.8 nm by optimizing the position of the mirror support point, the position of the triangular plate flexure joint, and the key dimension parameters of the support system’s flexible parts; under the state of 1 °C temperature difference, the specular aberration is reduced from 2.8 nm to 1.9 nm; the first-order resonance frequency is increased from 80 Hz to 130 Hz. Finally, this method is used to verify the correction ability of the semi-active support system. The results show that the correction rate of the semi-active support system for mirror defocus, primary astigmatism, primary coma and primary spherical aberration can reach up to 99%. The amplitude of each aberration is less than 1 nm; the correction rate of the RMS value of the mirror’s surface shape can reach up to 46.5% under it′s own weight state at room temperature, and the correction rate is 31.28%.
[1] |
范文强, 王志臣, 陈宝刚, 等. 地基大口径拼接镜面主动控制技术综述[J]. 中国光学,2020,13(6):1194-1208.
doi:10.37188/CO.2020-0032
FAN W Q, WANG ZH CH, CHEN B G,
et al. Review of the active control technology of large aperture ground telescopes with segmented mirrors[J].
Chinese Optics, 2020, 13(6): 1194-1208. (in Chinese)
doi:10.37188/CO.2020-0032
|
[2] |
王富国, 吴小霞, 邵亮, 等. 国外大型地基望远镜主镜支撑综述[J]. 与红外,2012,42(3):237-243.
doi:10.3969/j.issn.1001-5078.2012.03.001
WANG F G, WU X X, SHAO L,
et al. Review of foreign ground-based telescope primary mirror support[J].
Laser&
Infrared, 2012, 42(3): 237-243. (in Chinese)
doi:10.3969/j.issn.1001-5078.2012.03.001
|
[3] |
KAMPHUES F, CHEN L, ZHANG D,
et al. Warping harness actuator for the thirty meter telescope primary mirror segments[J].
Proceedings of SPIE, 2020, 11451: 1145150.
|
[4] |
王克军.天基大口径反射镜轻量化设计及复合支撑技术研究[D]. 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.
WANG K J. Research on the lightweight design and compound support of the large-aperture mirror for space-based telescope[D]. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016. (in Chinese)
|
[5] |
宫雪非, 陈迅, 陈哲. 拼接子镜力矩促动器布局的优化设计[J]. 光学 精密工程,2019,27(2):363-371.
doi:10.3788/OPE.20192702.0363
GONG X F, CHEN X, CHEN ZH. Layout optimization of warping harness for segmented-mirror telescope[J].
Optics and Precision Engineering, 2019, 27(2): 363-371. (in Chinese)
doi:10.3788/OPE.20192702.0363
|
[6] |
徐加慧, 夏立新, 陈诚. 基于有限元法的主镜底支撑的优化分析[J]. 机械设计与制造,2004(3):67-69.
doi:10.3969/j.issn.1001-3997.2004.03.034
XU J H, XIA L X, CHEN CH. Optimization analysis for the underside support of the primary mirror by the finite element method[J].
Machinery Design&
Manufacture, 2004(3): 67-69. (in Chinese)
doi:10.3969/j.issn.1001-3997.2004.03.034
|
[7] |
王从敬. 1 m口径光电经纬仪主镜及其支撑结构研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021, doi:
10.27522/d.cnki.gkcgs.2021.000044.
WANG C J. Research on the primary mirror and supporting structure of photoelectric theodolite with 1m aperture[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021, doi: 10.27522/d.cnki.gkcgs.2021.000044. (in Chinese)
|
[8] |
原帅. 2米碳化硅主镜在光机系统中精确定位方法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.
YUAN SH. Research of precise positioning method of 2-m SiC primary mirror in opto-mechanical system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018. (in Chinese)
|
[9] |
约德. 光机系统设计[M]. 3版. 周海宪, 程云芳, 译. 北京: 机械工业出版社, 2008: 480-481.
YODER JR P R.
Opto-Mechanical Systems Design[M]. 3rd ed. ZHOU H X, CHENG Y F, trans. Beijing: China Machine Press, 2008: 480-481. (in Chinese)
|
[10] |
吴松航, 董吉洪, 徐抒岩, 等. 快速反射镜椭圆弧柔性铰链多目标优化设计[J]. 红外与 工程,2021,50(4):20200286.
doi:10.3788/IRLA20200286
WU S H, DONG J H, XU SH Y,
et al. Multi-objective optimal design of elliptic flexible hinge in fast steering mirror[J].
Infrared and Laser Engineering, 2021, 50(4): 20200286. (in Chinese)
doi:10.3788/IRLA20200286
|
[11] |
韩琳楚. 基于TMT三镜的半主动光学面形校正技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.
HAN L CH. Study on correction of semi-active optics technology for large optical flat mirror based on TMT tertiary mirror[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, China, 2017. (in Chinese)
|
[12] |
曲慧东, 魏加立, 董得义, 等. 长条形空间反射镜组件轻量化结构设计[J]. 红外与 工程,2021,50(6):20200404.
doi:10.3788/IRLA20200404
QU H D, WEI J L, DONG D Y,
et al. Lightweight structural design of rectangular space mirror assembly[J].
Infrared and Laser Engineering, 2021, 50(6): 20200404. (in Chinese)
doi:10.3788/IRLA20200404
|
[13] |
刘奉昌, 李威, 赵伟国, 等. 临近空间望远镜次镜优化设计[J]. 红外与 工程,2021,50(2):20200178.
doi:10.3788/IRLA20200178
LIU F CH, LI W, ZHAO W G,
et al. Optimization design of secondary mirror for near space telescope[J].
Infrared and Laser Engineering, 2021, 50(2): 20200178. (in Chinese)
doi:10.3788/IRLA20200178
|
[14] |
胡海飞, 关英俊, 赵思宏, 等. 大口径反射镜分析驱动设计与优化[J]. 系统仿真学报,2013,25(5):990-994.
HU H F, GUAN Y J, ZHAO S H
et al. Analysis led design and optimization for large aperture mirror[J].
Journal of System Simulation, 2013, 25(5): 990-994. (in Chinese)
|
[15] |
胡海飞, 罗霄, 辛宏伟, 等. 超大口径光学制造均力支撑布局优化[J]. 光学学报,2014,34(4):0422003.
doi:10.3788/AOS201434.0422003
HU H F, LUO X, XIN H W,
et al. Layout optimization of equal-force supports for ultra-large optical fabrication[J].
Acta Optica Sinica, 2014, 34(4): 0422003. (in Chinese)
doi:10.3788/AOS201434.0422003
|
[16] |
吴松航, 董吉洪, 徐抒岩, 等. 拼接式望远镜主镜主动支撑技术综述[J]. 与光电子学进展,2021,58(3):0300006.
WU S H, DONG J H, XU SH Y,
et al. Overview of active support technology for main mirror of segmented telescopes[J].
Laser&
Optoelectronics Progress, 2021, 58(3): 0300006. (in Chinese)
|