Volume 15Issue 5
Sep. 2022
Turn off MathJax
Article Contents
ZHANG Xing, ZHANG Jian-wei, ZHOU Yin-li, Xue Hong-bo, NING Yong-qiang, WANG Li-jun. Narrow line width and magnetism-free vertical-cavity surface-emitting lasers for quantum sensing[J]. Chinese Optics, 2022, 15(5): 1038-1044. doi: 10.37188/CO.2022-0135
Citation: ZHANG Xing, ZHANG Jian-wei, ZHOU Yin-li, Xue Hong-bo, NING Yong-qiang, WANG Li-jun. Narrow line width and magnetism-free vertical-cavity surface-emitting lasers for quantum sensing[J].Chinese Optics, 2022, 15(5): 1038-1044.doi:10.37188/CO.2022-0135

Narrow line width and magnetism-free vertical-cavity surface-emitting lasers for quantum sensing

doi:10.37188/CO.2022-0135
Funds:Supported by National Key Research and Development Program (No. 2018YFB2002401); National Natural Science Foundation of China (No. 62090060, No. 52172165); Science and Technology Service Network Program of the Chinese Academy of Sciences (No. KFJ-STS-QYZD-2021-15-001); Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2017260, No. 2018181)
More Information
  • Corresponding author:zhangx@ciomp.ac.cn
  • Received Date:17 Jun 2022
  • Rev Recd Date:28 Jun 2022
  • Available Online:03 Aug 2022
  • In order to realize single mode, narrow linewidth and low magnetism field intensity operation of lasers, Vertical-Cavity Surface-Emitting Lasers (VCSEL) with integrated micro-lens extended cavity was designed and fabricated. First, an epitaxial structure suitable for the micro-lens integration was designed and grown by Metal Organic Chemical Vapor Deposition (MOCVD). The fabrication steps of the micro-lens integrated VCSEL was carried out and the magnetism-free material was used in the electrode deposition. Experimental results indicate that the operating temperature is 90 °C, the laser wavelength is 896.3 nm, the laser power is 1.52 mW, the side mode suppression ratio is as high as 36.3 dB and the operating magnetic field intensity is less than 0.03 nT. A narrow line width and magnetism-free VCSEL suitable for quantum sensing was demonstrated.

  • loading
  • [1]
    SODA H, IGA K I, KITAHARA C, et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 1979, 18(12): 2329-2330. doi:10.1143/JJAP.18.2329
    [2]
    张继业, 李雪, 张建伟, 等. 垂直腔面发射 器研究进展[J]. 发光学报,2020,41(12):1443-1459. doi:10.37188/CJL.20200339

    ZHANG J Y, LI X, ZHANG J W, et al. Research progress of vertical-cavity surface-emitting laser[J]. Chinese Journal of Luminescence, 2020, 41(12): 1443-1459. (in Chinese) doi:10.37188/CJL.20200339
    [3]
    张建伟, 宁永强, 张星, 等. 高温工作垂直腔面发射半导体 器 现状与未来(特邀)[J]. 光子学报,2022,51(2):0251201. doi:10.3788/gzxb20225102.0251201

    ZHANG J W, NING Y Q, ZHANG X, et al. Development and future of vertical cavity surface emitting lasers operated at high temperatures (invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251201. (in Chinese) doi:10.3788/gzxb20225102.0251201
    [4]
    LARSSON A. Advances in VCSELs for communication and sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1552-1567. doi:10.1109/JSTQE.2011.2119469
    [5]
    刘安金. 单模直调垂直腔面发射 器研究进展[J]. 中国 ,2020,47(7):0701005. doi:10.3788/CJL202047.0701005

    LIU A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701005. (in Chinese) doi:10.3788/CJL202047.0701005
    [6]
    IGA K. Forty years of vertical-cavity surface-emitting laser: invention and innovation[J]. Japanese Journal of Applied Physics, 2018, 57(8S2): 08PA01. doi:10.7567/JJAP.57.08PA01
    [7]
    HONG K B, HUANG W T, CHUNG H C, et al. High-speed and high-power 940 nm flip-chip VCSEL array for LiDAR application[J]. Crystals, 2021, 11(10): 1237. doi:10.3390/cryst11101237
    [8]
    刘畅, 肖垚, 刘恒, 等. 多结级联垂直腔面发射 器失效分析[J]. 发光学报,2022,43(3):388-395. doi:10.37188/CJL.20210396

    LIU CH, XIAO Y, LIU H, et al. Failure analysis of multi-junction cascade vertical cavity surface emitting laser[J]. Chinese Journal of Luminescence, 2022, 43(3): 388-395. (in Chinese) doi:10.37188/CJL.20210396
    [9]
    何晓颖, 董建, 胡帅, 等. 采用BCB平整技术的高速850 nm垂直面发射 器[J]. 中国光学,2018,11(2):190-197. doi:10.3788/co.20181102.0190

    HE X Y, DONG J, HU SH, et al. High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique[J]. Chinese Optics, 2018, 11(2): 190-197. (in Chinese) doi:10.3788/co.20181102.0190
    [10]
    周广正, 兰天, 李颖, 等. 高温稳定25 Gbit/s 850 nm垂直腔面发射 器[J]. 发光学报,2019,40(5):630-634. doi:10.3788/fgxb20194005.0630

    ZHOU G ZH, LAN T, LI Y, et al. High temperature-stable 25 Gbit/s 850 nm vertical-cavity surface-emitting lasers[J]. Chinese Journal of Luminescence, 2019, 40(5): 630-634. (in Chinese) doi:10.3788/fgxb20194005.0630
    [11]
    KHAN Z, CHANG Y H, PAN T L, et al. High-brightness, high-speed, and low-noise VCSEL arrays for optical wireless communication[J]. IEEE Access, 2022, 10: 2303-2317. doi:10.1109/ACCESS.2021.3133436
    [12]
    DEGEN C L, REINHARD F, CAPPELLARO P. Quantum sensing[J]. Reviews of Modern Physics, 2017, 89(3): 035002. doi:10.1103/RevModPhys.89.035002
    [13]
    王宇, 赵惟玉, 康翔宇, 等. SERF原子磁强计最新进展及应用综述[J]. 光学仪器,2021,43(6):77-86.

    WANG Y, ZHAO W Y, KANG X Y, et al. The latest development and application of SERF atomic magnetometer: a review[J]. Optical Instruments, 2021, 43(6): 77-86. (in Chinese)
    [14]
    张星, 张建伟, 张建, 等. 原子传感用垂直腔面发射 器研究进展[J]. 导航与控制,2020,19(1):116-124. doi:10.3969/j.issn.1674-5558.2020.01.013

    ZHANG X, ZHANG J W, ZHANG J, et al. Progress on vertical-cavity surface-emitting laser for atomic sensing applications[J]. Navigation and Control, 2020, 19(1): 116-124. (in Chinese) doi:10.3969/j.issn.1674-5558.2020.01.013
    [15]
    张福领, 付丽珊, 胡丕丽, 等. 795 nm亚波长光栅耦合腔垂直腔面发射 器的超窄线宽特性[J]. 物理学报,2021,70(22):224207. doi:10.7498/aps.70.20210293

    ZHANG F L, FU L SH, HU P L, et al. Ultra-narrow linewidth characteristics of 795-nm subwavelength grating-coupled cavity vertical cavity surface emitting laser[J]. Acta Physica Sinica, 2021, 70(22): 224207. (in Chinese) doi:10.7498/aps.70.20210293
    [16]
    ZHANG J W, ZHANG X, ZHU H B, et al. High-temperature operating 894.6 nm-VCSELs with extremely low threshold for Cs-based chip scale atomic clocks[J]. Optics Express, 2015, 23(11): 14763-14773. doi:10.1364/OE.23.014763
    [17]
    宋金伟, 张峰, 郭艳玲, 等. 基于非磁性材料Cr/Au的VCSEL欧姆接触特性[J]. 微纳电子技术,2020,57(6):430-435,449. doi:10.13250/j.cnki.wndz.2020.06.002

    SONG J W, ZHANG F, GUO Y L, et al. Ohmic contact properties of VCSEL based on non-magnetic material Cr/Au[J]. Micronanoelectronic Technology, 2020, 57(6): 430-435,449. (in Chinese) doi:10.13250/j.cnki.wndz.2020.06.002
    [18]
    WANG ZH F, NING Y Q, ZHANG Y, et al. High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array[J]. Optics Express, 2010, 18(23): 23900-23905. doi:10.1364/OE.18.023900
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(715) PDF downloads(209) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map