Citation: | TIAN Si-cong, TONG Cun-zhu, WANG Li-jun, BIMBERG Dieter. Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP[J].Chinese Optics, 2022, 15(5): 946-953.doi:10.37188/CO.2022-0136 |
High-speed vertical-cavity surface-emitting laser (VCSEL) is one of the main light sources for optical communication. Driven by the rapid growth of data traffic, the high-speed VCSEL is developing towards larger bandwidth and higher bit rate. By optimizing the epitaxy design and the growth of VCSELs, the design and the fabrication of VCSELs, and the high-frequency characterization techniques, much remarkable progress of high-speed VCSELs with different wavelengths have been achieved in modulation bandwidth, transmission rate, mode, power consumption in Changchun Institute of Optics, Fine Machanics and Physics (CIOMP). The research progress of high-speed VCSELs includes: high-speed single-mode 940 nm VCSEL with 27.65 GHz modulation bandwidth and 53 Gbit/s transmission rate; 200 Gbit/s optical link based on 850 nm, 880 nm, 910 nm and 940 nm high-speed VCSELs via wavelength division multiplexing; ultra-low power consumption as low as 100 fJ/bit of high-speed VCSEL via optimization of photon lifetime; 1030 nm high-speed VCSEL with 25 GHz modulation bandwidth; 1550 nm high-speed VCSEL with 37 Gbit/s transmission rate. The developed high-speed VCSELs have important application prospects in optical communication.
[1] |
Global Internet Growth and Trends (Source: Cisco VNI Global IP Traffic Forecast, 2017-2022)[EB/OL]. https://cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf.
|
[2] |
TIAN S C, AHAMED M, LARISCH G,
et al. Novel energy-efficient designs of vertical-cavity surface emitting lasers for the next generations of photonic systems[J].
Japanese Journal of Applied Physics, 2022, 61(SK): SK0801.
doi:10.35848/1347-4065/ac65d9
|
[3] |
TATUM J A, LANDRY G D, GAZULA D,
et al. . VCSEL-based optical transceivers for future data center applications[C].
2018 Optical Fiber Communications Conference and Exposition, IEEE, 2018: 1-3.
|
[4] |
FENG M, WU C H, HOLONYAK N. Oxide-confined VCSELs for high-speed optical interconnects[J].
IEEE Journal of Quantum Electronics, 2018, 54(3): 2400115.
|
[5] |
HAGLUND E, WESTBERGH P, GUSTAVSSON J S,
et al. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25-50 Gbit/s[J].
Electronics Letters, 2015, 51(14): 1096-1098.
doi:10.1049/el.2015.0785
|
[6] |
CHENG C L, LEDENTSOV N, KHAN Z,
et al. Ultrafast Zn-diffusion and oxide-relief 940 nm vertical-cavity surface-emitting lasers under high-temperature operation[J].
IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1700507.
|
[7] |
HAGHIGHI N, LARISCH G, ROSALES R,
et al. . 35 GHz bandwidth with directly current modulated 980 nm oxide aperture single cavity VCSELs[C].
2018 IEEE International Semiconductor Laser Conference, IEEE, 2018: 1-2.
|
[8] |
SIMPANEN E, GUSTAVSSON J S, HAGLUND E,
et al. 1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate[J].
Electronics Letters, 2017, 53(13): 869-871.
doi:10.1049/el.2017.1165
|
[9] |
KUCHTA D M, RYLYAKOV A V, DOANY F E,
et al. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link[J].
IEEE Photonics Technology Letters, 2015, 27(6): 577-580.
doi:10.1109/LPT.2014.2385671
|
[10] |
杨卓凯, 田思聪, LARISCH G, 等. 基于PAM4调制的高速垂直腔面发射 器研究进展[J]. 发光学报,2020,41(4):399-413.
doi:10.3788/fgxb20204104.0399
YANG ZH K, TIAN S C, LARISCH G,
et al. High-speed vertical-cavity surface-emitting lasers based on PAM4 modulation[J].
Chinese Journal of Luminescence, 2020, 41(4): 399-413. (in Chinese)
doi:10.3788/fgxb20204104.0399
|
[11] |
ZUO T J, ZHANG T T, ZHANG S,
et al. . Single-lane 200-Gbps PAM-4 transmission for Datacenter Intra-Connections employing 850-nm VCSEL[C].
2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications, IEEE, 2020: 1-3.
|
[12] |
LARISCH G, ROSALES R, BIMBERG D. Energy-efficient 50+ Gb/s VCSELs for 200+ Gb/s optical interconnects[J].
IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1701105.
|
[13] |
STEPNIAK G, LEWANDOWSKI A, KROPP J R,
et al. 54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF[J].
Electronics Letters, 2016, 52(8): 633-635.
doi:10.1049/el.2015.4264
|
[14] |
MOSER P, LOTT J A, WOLF P,
et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s[J].
Electronics Letters, 2012, 48(20): 1292-1294.
doi:10.1049/el.2012.2944
|
[15] |
刘安金. 单模直调垂直腔面发射 器研究进展[J]. 中国 ,2020,47(7):0701005.
doi:10.3788/CJL202047.0701005
LIU A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting laser[J].
Chinese Journal of Lasers, 2020, 47(7): 0701005. (in Chinese)
doi:10.3788/CJL202047.0701005
|
[16] |
徐汉阳, 田思聪, 韩赛一, 等. 53 Gbit/s高速单模940 nm垂直腔面发射 器[J]. 发光学报,2022,43(7):1114-1120.
XU H Y, TIAN S C, HAN S Y,
et al. 53 Gbit/s high speed single mode 940 nm vertical-cavity surface-emitting laser[J].
Chinese Journal of Luminescence, 2022, 43(7): 1114-1120. (in Chinese)
|
[17] |
WESTBERGH P, GUSTAVSSON J S, KÖGEL B,
et al. Impact of photon lifetime on high-speed VCSEL performance[J].
IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1603-1613.
doi:10.1109/JSTQE.2011.2114642
|
[18] |
HU SH, HE X Y, HE Y,
et al. Impact of damping on high speed 850 nm VCSEL performance[J].
Journal of Semiconductors, 2018, 39(11): 114006.
doi:10.1088/1674-4926/39/11/114006
|
[19] |
LARISCH G, MOSER P, LOTT J A,
et al. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs[J].
IEEE Photonics Technology Letters, 2016, 28(21): 2327-2330.
doi:10.1109/LPT.2016.2592985
|
[20] |
LARISCH G, TIAN S C, BIMBERG D. Optimization of VCSEL photon lifetime for minimum energy consumption at varying bit rates[J].
Optics Express, 2020, 28(13): 18931-18937.
doi:10.1364/OE.391781
|
[21] |
KUCHTA D M. High-speed low-power short-reach optical interconnects for high-performance computing and servers[J].
Proceedings of SPIE, 2014, 9010: 901007.
|
[22] |
LI M J. Novel optical fibers for data center applications[J].
Proceedings of SPIE, 2016, 9772: 977205.
|
[23] |
韩赛一, 田思聪, 徐汉阳, 等. 高速1 550 nm垂直腔面发射 器研究进展[J]. 发光学报,2022,43(5):736-744.
doi:10.37188/CJL.20220048
HAN S Y, TIAN S C, XU H Y,
et al. Research progress of high-speed 1 550 nm vertical cavity surface emitting laser[J].
Chinese Journal of Luminescence, 2022, 43(5): 736-744. (in Chinese)
doi:10.37188/CJL.20220048
|
[24] |
BABICHEV A V, KARACHINSKY L Y, NOVIKOV I I,
et al. 6-mW single-mode high-speed 1550-nm wafer-fused VCSELs for DWDM application[J].
IEEE Journal of Quantum Electronics, 2017, 53(6): 2400808.
|