Volume 16Issue 3
May 2023
Turn off MathJax
Article Contents
ZHANG Xin-rong, WANG Xin, WANG Yao, XIANG Gao-feng. 3D reconstruction method based on a rotating 2D laser scanner and multi-sensor[J]. Chinese Optics, 2023, 16(3): 663-672. doi: 10.37188/CO.2022-0159
Citation: ZHANG Xin-rong, WANG Xin, WANG Yao, XIANG Gao-feng. 3D reconstruction method based on a rotating 2D laser scanner and multi-sensor[J].Chinese Optics, 2023, 16(3): 663-672.doi:10.37188/CO.2022-0159

3D reconstruction method based on a rotating 2D laser scanner and multi-sensor

doi:10.37188/CO.2022-0159
Funds:Supported by Shaanxi International Science and Technology Cooperation Project (No. 2019KW-015); the Fundamental Research Funds for the Central Universities (No. 300102259306)
More Information
  • 3D reconstruction technology is one of the most popular research directions in machine vision, and has been widely used in the fields of unmanned driving and digital processing and production. Traditional 3D reconstruction methods include depth cameras and multi-line laser scanners, but the point clouds obtained by depth cameras have incomplete and inaccurate information, and the high cost of multi-line laser scanners hinders their application and research. To solve these problems, a three-dimensional reconstruction method based on a rotating two-dimensional laser scanner was proposed. First, a stepper motor was used to rotate a 2D laser scanner to obtain 3D point cloud data. Then, the position of the laser scanner was calibrated by multi-sensor fusion, and the point cloud data was matched by transforming the coordinate system. Finally, the collected point cloud data were filtered and simplified. The experimental results show that compared with depth camera/IMU data fusion, the reconstruction method’s average error of the proposed method is reduced by 0.93 mm, and it is 4.24 mm, the accuracy has reached the millimeter level, and the error rate is also controlled within 2%. The cost of the whole set of equipment is also greatly reduced compared to the multi-line laser scanner. It basically meets the requirements of high precision and low cost and retaining the shape characteristics of the object.

  • loading
  • [1]
    姚程, 马彩文. 基于平面补丁的自适应八叉树三维图像重建[J]. 光学 精密工程,2022,30(9):1113-1122. doi:10.37188/OPE.20223009.1113

    YAO CH, MA C W. Adaptive octree 3D image reconstruction based on plane patch[J]. Optics and Precision Engineering, 2022, 30(9): 1113-1122. (in Chinese) doi:10.37188/OPE.20223009.1113
    [2]
    PULITI M, MONTAGGIOLI G, SABATO A. Automated subsurface defects' detection using point cloud reconstruction from infrared images[J]. Automation in Construction, 2021, 129: 103829. doi:10.1016/j.autcon.2021.103829
    [3]
    赵杰, 陈小梅, 侯玮旻, 等. 基于城市遥感卫星影像对的立体匹配[J]. 光学 精密工程,2022,30(7):830-839. doi:10.37188/OPE.20223007.0830

    ZHAO J, CHEN X M, HOU W M, et al. Stereo matching based on urban satellite remote sensing image pair[J]. Optics and Precision Engineering, 2022, 30(7): 830-839. (in Chinese) doi:10.37188/OPE.20223007.0830
    [4]
    孙艺洋, 许金凯, 于占江, 等. 微细铣刀位姿同轴全息重建方法[J]. 中国光学,2022,15(2):355-363. doi:10.37188/CO.2021-0089

    SUN Y Y, XU J K, YU ZH J, et al. Coaxial holographic reconstruction method of micro-milling tool pose[J]. Chinese Optics, 2022, 15(2): 355-363. (in Chinese) doi:10.37188/CO.2021-0089
    [5]
    SHUANG Y C, WANG Z Z. Active stereo vision three-dimensional reconstruction by RGB dot pattern projection and ray intersection[J]. Measurement, 2021, 167: 108195. doi:10.1016/j.measurement.2020.108195
    [6]
    WANG C W, PENG C C. 3D face point cloud reconstruction and recognition using depth sensor[J]. Sensors, 2021, 21(8): 2587. doi:10.3390/s21082587
    [7]
    WANG B Y, WANG Q, CHENG J C P, et al. Vision-assisted BIM reconstruction from 3D LiDAR point clouds for MEP scenes[J]. Automation in Construction, 2022, 133: 103997. doi:10.1016/j.autcon.2021.103997
    [8]
    蔡军, 赵原, 李宇豪, 等. 一种三维 扫描系统的设计及参数标定[J]. 北京航空航天大学学报,2018,44(10):2208-2216. doi:10.13700/j.bh.1001-5965.2018.0029

    CAI J, ZHAO Y, LI Y H, et al. A 3D laser scanning system design and parameter calibration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2208-2216. (in Chinese) doi:10.13700/j.bh.1001-5965.2018.0029
    [9]
    钱超杰, 杨明, 戚明旭, 等. 基于摆动单线 雷达的大场景稠密点云地图创建系统[J]. 机器人,2019,41(4):464-472,492. doi:10.13973/j.cnki.robot.180543

    QIAN CH J, YANG M, QI M X, et al. Swinging single-layer LiDAR based dense point cloud map reconstruction system for large-scale scenes[J]. Robot, 2019, 41(4): 464-472,492. (in Chinese) doi:10.13973/j.cnki.robot.180543
    [10]
    王锐, 常锴, 符国浩, 等. 单线 雷达与GNSS/INS的空间重构[J]. 光学 精密工程,2020,28(4):851-858.

    WANG R, CHANG K, FU G H, et al. Space reconstruction using single-line LIDAR and GNSS/INS fused data[J]. Optics and Precision Engineering, 2020, 28(4): 851-858. (in Chinese)
    [11]
    LU H J, XU SH G, CAO SH. SGTBN: generating dense depth maps from single-line LiDAR[J]. IEEE Sensors Journal, 2021, 21(17): 19091-19100. doi:10.1109/JSEN.2021.3088308
    [12]
    WEN W S, PFEIFER T, BAI X W, et al. Factor graph optimization for GNSS/INS integration: a comparison with the extended Kalman filter[J]. Journal of the Institute of Navigation, 2021, 68(2): 315-331. doi:10.1002/navi.421
    [13]
    NING X J, LI F, TIAN G, et al. An efficient outlier removal method for scattered point cloud data[J]. PLoS One, 2018, 13(8): e0201280. doi:10.1371/journal.pone.0201280
    [14]
    袁小翠, 吴禄慎, 陈华伟. 特征保持点云数据精简[J]. 光学 精密工程,2015,23(9):2666-2676. doi:10.3788/OPE.20152309.2666

    YUAN X C, WU L SH, CHEN H W. Feature preserving point cloud simplification[J]. Optics and Precision Engineering, 2015, 23(9): 2666-2676. (in Chinese) doi:10.3788/OPE.20152309.2666
    [15]
    TIAN Y, XU H, GUAN F, et al. Projection and integration of connected-infrastructure LiDAR sensing data in a global coordinate[J]. Optics& Laser Technology, 2021, 144: 107421.
    [16]
    WELCH G F. Kalman filter[J]. Computer Vision: A Reference Guide, 2020: 1-3.
    [17]
    NAGUI N, ATTALLAH O, ZAGHLOUL M S, et al. Improved GPS/IMU loosely coupled integration scheme using two kalman filter-based cascaded stages[J]. Arabian Journal for Science and Engineering, 2021, 46(2): 1345-1367. doi:10.1007/s13369-020-05144-8
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)/Tables(3)

    Article views(362) PDF downloads(253) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map