Volume 16Issue 5
Sep. 2023
Turn off MathJax
Article Contents
LENG Rong-kuan, WANG Shang, WANG Zhi, CHEN Zhi-wei, FANG Chao. Measurement and suppression of forward stray light for spaceborne gravitational wave detection[J]. Chinese Optics, 2023, 16(5): 1081-1088. doi: 10.37188/CO.2022-0251
Citation: LENG Rong-kuan, WANG Shang, WANG Zhi, CHEN Zhi-wei, FANG Chao. Measurement and suppression of forward stray light for spaceborne gravitational wave detection[J].Chinese Optics, 2023, 16(5): 1081-1088.doi:10.37188/CO.2022-0251

Measurement and suppression of forward stray light for spaceborne gravitational wave detection

doi:10.37188/CO.2022-0251
Funds:Supported by National Natural Science Foundation of China (No. 62075214); National Key R&D Program of China (No. 2020YFC2200104)
  • Received Date:07 Dec 2022
  • Rev Recd Date:06 Jan 2023
  • Available Online:13 Apr 2023
  • In the spaceborne gravitational wave interferometric detection, the problem of stray light has received long-term attention. The laser light emitted by the local interferometer produces backward coherent stray light when passing the telescope while the radiation from space that is incident to the spacecraft produces forward incoherent stray light. Forward incoherent stray light has received less attention at this point, but it is a necessary factor of gravitational-wave telescope design. Therefore, this paper studies stray light produced by space gravitational wave telescopes in orbit. First, the annual solar angle is calculated according to the orbital data of the three-star satellite formation of the Taiji Project, and the solar radiation around the 1064 nm band is evaluated. The baffle shadowing function is derived, which satisfies the requirement for the baffle design. The telescope is then modeled optically and mechanically and scatter measurements are conducted for critical optical components. Finally, the stray light reaching the pupil of the telescope is determined based on the energy of the incident sunlight. The results show that when the angle between the incident light and the optical axis is 60°, the stray radiation at the exit pupil is 3.9×10−12W, and the corresponding point source transmittance is 8.7×10−9which meets the requirement for space gravitational waves to detect extremely low levels of stray light.

  • loading
  • [1]
    LUO Z R, WANG Y, WU Y L, et al. The Taiji program: a concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 2021(5): 05A108. doi:10.1093/ptep/ptaa083
    [2]
    罗子人, 白姗, 边星, 等. 空间 干涉引力波探测[J]. 力学进展,2013,43(4):415-447.

    LUO Z R, BAI SH, BIAN X, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447. (in Chinese)
    [3]
    BILLING H, WINKLER W, SCHILLING R, et al. . The munich gravitational wave detector using laser interferometry[M]//MEYSTRE P, SCULLY M O. Quantum Optics, Experimental Gravity, and Measurement Theory. New York: Springer, 1983: 525-566.
    [4]
    MAISCHBERGER K, RÜDIGER A, SCHILLING R, et al. . High precision laser interferometry for detection of gravitational radiation[C]. Proceedings of the Fifth International Conference on Laser Spectroscopy V, Springer, 1981: 25-32.
    [5]
    SASSO C P, MANA G, MOTTINI S. The LISA interferometer: impact of stray light on the phase of the heterodyne signal[J]. Classical and Quantum Gravity, 2019, 36(7): 075015. doi:10.1088/1361-6382/ab0a15
    [6]
    CANUEL B, GENIN E, VAJENTE G, et al. Displacement noise from back scattering and specular reflection of input optics in advanced gravitational wave detectors[J]. Optics Express, 2013, 21(9): 10546-10562. doi:10.1364/OE.21.010546
    [7]
    LENG R K, WANG ZH, FANG CH, et al. Backscattering estimation of a tilted spherical cap for different kinds of optical scattering[J]. Optics, 2022, 3(2): 177-190. doi:10.3390/opt3020018
    [8]
    李卓, 王有亮, 郑建华, 等. 空间引力波探测任务的入轨误差分析[J]. 中国光学,2019,12(3):493-502. doi:10.3788/co.20191203.0493

    LI ZH, WANG Y L, ZHENG J H, et al. Injection error analysis of space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 493-502. (in Chinese) doi:10.3788/co.20191203.0493
    [9]
    王智, 马军, 李静秋. 空间引力波探测计划-LISA系统设计要点[J]. 中国光学,2015,8(6):980-987. doi:10.3788/co.20150806.0980

    WANG ZH, MA J, LI J Q. Space-based gravitational wave detection mission: design highlights of LISA system[J]. Chinese Optics, 2015, 8(6): 980-987. (in Chinese) doi:10.3788/co.20150806.0980
    [10]
    李建聪, 林宏安, 罗佳雄, 等. 空间引力波探测望远镜光学系统设计[J]. 中国光学,2022,15(4):761-769.

    LI J C, LIN H A, LUO J X, et al. Optical design of space gravitational wave detection telescope[J]. Chinese Optics, 2022, 15(4): 761-769. (in Chinese)
    [11]
    王智, 沙巍, 陈哲, 等. 空间引力波探测望远镜初步设计与分析[J]. 中国光学,2018,11(1):131-151. doi:10.3788/co.20181101.0131

    WANG ZH, SHA W, CHEN ZH, et al. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chinese Optics, 2018, 11(1): 131-151. (in Chinese) doi:10.3788/co.20181101.0131
    [12]
    SANJUAN J, MUELLER G, LIVAS J, et al. . LISA telescope spacer design investigations[C]. 38th COSPAR Scientific Assembly, COSOAR, 2010.
    [13]
    向诗红, 张涛. 利用STK计算卫星外表面接收的太阳直接辐射[J]. 红外技术,2007,29(9):508-511.

    XIANG SH H, ZHANG T. Calculation of solar direct radiation on the satellite external surface using STK[J]. Infrared Technology, 2007, 29(9): 508-511. (in Chinese)
    [14]
    BREAULT R P. Vane structure design trade-off and performance analysis[J]. Proceedings of SPIE, 1989, 967: 90-117. doi:10.1117/12.948095
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)/Tables(1)

    Article views(292) PDF downloads(187) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map