Citation: | SONG Ying, ZHANG Hao-ran, LI Jian-zhi, SHEN Bo-hao, LIU Zhan-jian. Fiber bragg grating accelerometer based on flexure hinge and bearing[J].Chinese Optics, 2023, 16(5): 1109-1120.doi:10.37188/CO.2022-0252 |
We develop a fiber Bragg grating accelerometer based on a bearing and flexure hinge for the measurement of medium-high frequency vibration signals. The mathematical model between its natural frequency and sensitivity and structural parameters is derived based on a mechanical model, and the structural design is optimized based on the theoretical analysis results. With these prerequisites, the sensor was fabricated. Ultimately, its dynamic characteristics are validated using a finite element simulation and vibration experiment. The results show that both its operating frequency range and acceleration sensitivity are 10−1200 Hz and 17.25 pm/g. In addition, this proposed sensor has some advantages such as an error of less than 0.3 g, a good linearity of greater than 0.99, a repeatability error of 2.33%, and it is free of temperature.
[1] |
顾宏灿, 黄俊斌, 程玲, 等. 20~1250 Hz光纤 加速度传感系统设计[J]. 中国光学(中英文),2017,10(4):469-476.
doi:10.3788/co.20171004.0469
GU H C, HUANG J B, CHENG L,
et al. 20-1250 Hz fiber laser acceleration sensing system[J].
Chinese Optics, 2017, 10(4): 469-476. (in Chinese)
doi:10.3788/co.20171004.0469
|
[2] |
LI J H, MA H, YANG CH Y,
et al. Research progress of the laser vibration measurement techniques for acoustic-to-seismic coupling landmine detection[J].
Chinese Optics, 2021, 14(3): 487-502.
doi:10.37188/CO.2020-0134
|
[3] |
BAASCH B, HEUSEL J, ROTH M,
et al. Train wheel condition monitoring via cepstral analysis of axle box accelerations[J].
Applied Sciences, 2021, 11(4): 1432.
doi:10.3390/app11041432
|
[4] |
GOTO H, KANEKO Y, YOUNG J,
et al. Extreme accelerations during earthquakes caused by elastic flapping effect[J].
Scientific Reports, 2019, 9(1): 1117.
doi:10.1038/s41598-018-37716-y
|
[5] |
朱峰, 唐毓涛, 高晨轩. 弓网离线电弧对CRH380BL型动车组速度传感器的电磁干扰机理及抑制[J]. 中国铁道科学,2016,37(6):69-74.
doi:10.3969/j.issn.1001-4632.2016.06.09
ZHU F, TANG Y T, GAO CH X. Mechanism and suppression of electromagnetic interference of pantograph-catenary arc to speed sensor of CRH380BL electric multiple unit[J].
China Railway Science, 2016, 37(6): 69-74. (in Chinese)
doi:10.3969/j.issn.1001-4632.2016.06.09
|
[6] |
吴虎, 孔勇, 王振伟, 等. 基于端点检测与信号重组的光纤分布式传感信号识别[J]. 光子学报,2021,50(11):1106005.
doi:10.3788/gzxb20215011.1106005
WU H, KONG Y, WANG ZH W,
et al. Fiber distributed sensing signal recognition based on endpoint detection and signal recombination[J].
Acta Photonica Sinica, 2021, 50(11): 1106005. (in Chinese)
doi:10.3788/gzxb20215011.1106005
|
[7] |
JIANG SH D, WANG Y Y, ZHANG F X,
et al. A high-sensitivity FBG accelerometer and application for flow monitoring in oil wells[J].
Optical Fiber Technology, 2022, 74: 103128.
doi:10.1016/j.yofte.2022.103128
|
[8] |
QIU ZH CH, SUN R, TENG Y T,
et al. Design and test of a low frequency fiber Bragg grating acceleration sensor with double tilted cantilevers[J].
Optics Communications, 2022, 507: 127663.
doi:10.1016/j.optcom.2021.127663
|
[9] |
魏莉, 刘壮, 李恒春, 等. 基于“士”字形梁增敏结构的光纤光栅振动传感器[J]. 光学学报,2019,39(11):1106004.
WEI L, LIU ZH, LI H CH,
et al. Fiber Bragg grating vibration sensor based on sensitive structure for "Shi"-shaped beam[J].
Acta Optica Sinica, 2019, 39(11): 1106004. (in Chinese)
|
[10] |
ZHAO X F, JIA ZH A, FAN W,
et al. A fiber Bragg grating acceleration sensor with temperature compensation[J].
Optik, 2021, 241: 166993.
doi:10.1016/j.ijleo.2021.166993
|
[11] |
LI T L, TAN Y G, HAN X,
et al. Diaphragm based fiber Bragg grating acceleration sensor with temperature compensation[J].
Sensors, 2017, 17(1): 218.
|
[12] |
魏莉, 余玲玲, 姜达州, 等. 基于膜片与菱形结构的光纤布拉格光栅加速度传感器[J]. 中国 ,2019,46(9):0910003.
doi:10.3788/CJL201946.0910003
WEI L, YU L L, JIANG D ZH,
et al. Fiber Bragg grating accelerometer based on diaphragm and diamond structure[J].
Chinese Journal of Lasers, 2019, 46(9): 0910003. (in Chinese)
doi:10.3788/CJL201946.0910003
|
[13] |
FAN W, WEN J, GAO H,
et al. Low-frequency fiber Bragg grating accelerometer based on diaphragm-type cantilever[J].
Optical Fiber Technology, 2022, 70: 102888.
doi:10.1016/j.yofte.2022.102888
|
[14] |
WU H, LIN Q J, ZHAO N,
et al. A high-frequency acceleration sensor based on fiber grating[J].
IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7003808.
|
[15] |
WANG X F, GUO Y X, XIONG L,
et al. High-frequency optical fiber Bragg grating accelerometer[J].
IEEE Sensors Journal, 2018, 18(12): 4954-4960.
doi:10.1109/JSEN.2018.2833885
|
[16] |
LI Y ZH, MA Q Q, CHEN F Y,
et al. A flexible hinge accelerometer based on dual short fiber Bragg grating[J].
Sensors and Actuators A:
Physical, 2022, 344: 113695.
doi:10.1016/j.sna.2022.113695
|
[17] |
LIANG L, WANG H, LI Z CH,
et al. Miniature bending-resistant fiber grating accelerometer based on a flexible hinge structure[J].
Optics Express, 2022, 30(19): 33502-33514.
doi:10.1364/OE.465453
|
[18] |
YAN B, LIANG L. A novel fiber Bragg grating accelerometer based on parallel double flexible hinges[J].
IEEE Sensors Journal, 2020, 20(9): 4713-4718.
doi:10.1109/JSEN.2019.2925017
|
[19] |
LUO X D, LI Y F, FENG D Q,
et al. Fiber Bragg grating accelerometer based on symmetrical double flexure hinges[J].
Optical Fiber Technology, 2022, 68: 102795.
doi:10.1016/j.yofte.2021.102795
|
[20] |
QIU ZH CH, ZHANG J Q, TENG Y T,
et al. Hinge-type FBG acceleration sensor based on double elastic plate[J].
Scientific Reports, 2021, 11(1): 24319.
doi:10.1038/s41598-021-03628-7
|
[21] |
LI Z CH, LIANG L, WANG H,
et al. A medium-frequency fiber Bragg grating accelerometer based on flexible hinges[J].
Sensors, 2021, 21(21): 6968.
doi:10.3390/s21216968
|
[22] |
FRIEDRICH R, LAMMERING R, HEURICH T. Nonlinear modeling of compliant mechanisms incorporating circular flexure hinges with finite beam elements[J].
Precision Engineering, 2015, 42: 73-79.
doi:10.1016/j.precisioneng.2015.04.001
|
[23] |
吴鹰飞, 周兆英. 柔性铰链转动刚度计算公式的推导[J]. 仪器仪表学报,2004,25(1):125-128,137.
doi:10.3321/j.issn:0254-3087.2004.01.032
WU Y F, ZHOU ZH Y. Deduction of design equation of flexure hinge[J].
Chinese Journal of Scientific Instrument, 2004, 25(1): 125-128,137. (in Chinese)
doi:10.3321/j.issn:0254-3087.2004.01.032
|
[24] |
周晓林, 崔长彩, 范伟, 等. 柔性铰链的3种模型计算和分析[J]. 机械设计,2011,28(5):5-9.
doi:10.13841/j.cnki.jxsj.2011.05.014
ZHOU X L, CUI CH C, FAN W,
et al. Computation and analysis of the three models of flexure hinge[J].
Journal of Machine Design, 2011, 28(5): 5-9. (in Chinese)
doi:10.13841/j.cnki.jxsj.2011.05.014
|
[25] |
谢官模. 振动力学[M]. 北京: 国防工业出版社, 2007.
XIE G M.
Vibration Mechanical[M]. Beijing: National Defense Industry Press, 2007. (in Chinese)
|
[26] |
何道清, 张禾, 石明江. 传感器与传感器技术[M]. 4版. 北京: 科学出版社, 2020.
HE D Q, ZHANG H, SHI M J.
Sensors and Sensor Technology[M]. 4th ed. Beijing: Science Press, 2020. (in Chinese)
|