Citation: | YU Miao, LI Jian-cong, LIN Hong-an, HUANG Yao-zhang, LUO Jia-xiong, WU Yan-xiong, WANG Zhi. Design of optical system for low-sensitivity space gravitational wave telescope[J].Chinese Optics, 2023, 16(6): 1384-1393.doi:10.37188/CO.2023-0006 |
The Taiji program is a key task for China's space gravitational wave detection, and as an important part of space gravitational wave detection, the telescope's performance will directly affect the accuracy of gravitational wave detection. For the existing typical space gravitational wave telescope structures, due to the high sensitivity of secondary mirror, it is difficult to meet the requirements for manufacturing and adjustment tolerance of larger aperture space gravitational wave telescopes, especially the tolerance requirements for in-orbit stability. In order to solve the above problems, firstly, a new optical system structure of space gravitational wave telescope with intermediate image plane set between three and four mirrors is proposed to reduce the sensitivity of the secondary mirror. Combined with the theoretical method of Gaussian optics, the initial parameters of the structure of the new telescope are theoretically analyzed and calculated. Secondly, through the optimization design, a telescope optical system with a pupil diameter of 400 mm, a magnification of 80 times, a field of view of ± 8 μrad, and a wavefront error RMS value of better than 0.0063λ was obtained. Finally, the sensitivity evaluation tolerance allocation table of the telescope system is established, and the tolerances of the existing telescope structure and the new telescope structure are compared and analyzed. Compared with the existing telescope structure, the sensitivity of the new telescope structure is reduced by 30.4%. The results show that the new telescope structure has the advantage of low sensitivity, which provides an optimal scheme for the design of space gravitational wave telescopes.
[1] |
MILLER M C, YUNES N. The new frontier of gravitational waves[J].
Nature, 2019, 568(7753): 469-476.
doi:10.1038/s41586-019-1129-z
|
[2] |
ESA. LISA assessment study report (Yellow Book)[EB/OL]. https://sci.esa.int/documents/35005/36499/1567258681608-LISA_YellowBook_ESA-SRE-2011-3_Feb2011.pdf. (2011-10-11)
|
[3] |
LUO Z R, WANG Y, WU Y L,
et al. The Taiji program: a concise overview[J].
Progress of Theoretical and Experimental Physics, 2021, 2021(5): 05A108.
doi:10.1093/ptep/ptaa083
|
[4] |
TIAN Y CH. Research on the analytical development and progress of gravitational wave detection technology[J].
Journal of Physics:
Conference Series, 2021, 2083(2): 022043.
doi:10.1088/1742-6596/2083/2/022043
|
[5] |
ZHAO Y, SHEN J, FANG CH,
et al. Tilt-to-length noise coupled by wavefront errors in the interfering beams for the space measurement of gravitational waves[J].
Optics Express, 2020, 28(17): 25545-25561.
doi:10.1364/OE.397097
|
[6] |
王智, 沙巍, 陈哲, 等. 空间引力波探测望远镜初步设计与分析[J]. 中国光学,2018,11(1):131-151.
doi:10.3788/co.20181101.0131
WANG ZH, SHA W, CHEN ZH,
et al. Preliminary design and analysis of telescope for space gravitational wave detection[J].
Chinese Optics, 2018, 11(1): 131-151. (in Chinese)
doi:10.3788/co.20181101.0131
|
[7] |
陈胜楠, 姜会林, 王春艳, 等. 大倍率离轴无焦四反光学系统设计[J]. 中国光学,2020,13(1):179-188.
doi:10.3788/co.20201301.0179
CHEN SH N, JIANG H L, WANG CH Y,
et al. Design of off-axis four-mirror afocal optical system with high magnification[J].
Chinese Optics, 2020, 13(1): 179-188. (in Chinese)
doi:10.3788/co.20201301.0179
|
[8] |
李建聪, 林宏安, 罗佳雄, 等. 空间引力波探测望远镜光学系统设计[J]. 中国光学(中英文),2022,15(4):761-769.
doi:10.37188/CO.2022-0018
LI J C, LIN H A, LUO J X,
et al. Optical design of space gravitational wave detection telescope[J].
Chinese Optics, 2022, 15(4): 761-769. (in Chinese)
doi:10.37188/CO.2022-0018
|
[9] |
ZHAO Y, SHEN J, FANG CH,
et al. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves[J].
Applied Optics, 2021, 60(2): 438-444.
doi:10.1364/AO.405467
|
[10] |
范纹彤, 赵宏超, 范磊, 等. 空间引力波探测望远镜系统技术初步分析[J]. 中山大学学报(自然科学版),2021,60(1):178-185.
doi:10.13471/j.cnki.acta.snus.2020.11.02.2020b111
FAN W T, ZHAO H CH, FAN L,
et al. Preliminary analysis of space gravitational wave detection telescope system technology[J].
Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1): 178-185. (in Chinese)
doi:10.13471/j.cnki.acta.snus.2020.11.02.2020b111
|
[11] |
QIN Z CH, WANG X D, REN CH M,
et al. Design method for a reflective optical system with low tilt error sensitivity[J].
Optics Express, 2021, 29(26): 43464-43479.
doi:10.1364/OE.447556
|
[12] |
FAN Z CH, ZHAO L J, CAO SH Y,
et al. High performance telescope system design for the TianQin project[J].
Classical and Quantum Gravity, 2022, 39(19): 195017.
doi:10.1088/1361-6382/ac8b57
|
[13] |
赵宇宸, 胡长虹, 吕恒毅, 等. 紧凑型偏视场多光路耦合同轴四反光学系统设计[J]. 红外与 工程,2021,50(3):20200197.
doi:10.3788/IRLA20200197
ZHAO Y CH, HU CH H, LV H Y,
et al. Design of high-density coaxial four-mirror optical system with field-bias and multi-light-channel coupled[J].
Infrared and Laser Engineering, 2021, 50(3): 20200197. (in Chinese)
doi:10.3788/IRLA20200197
|
[14] |
陈太喜, 伍雁雄, 宋绍漫, 等. 折叠式离轴三反光学系统设计与装调[J]. 与光电子学进展,2021,58(17):1722001.
CHEN T X, WU Y X, SONG SH M,
et al. Design and alignment of folded off-axis three-mirror optical system[J].
Laser&
Optoelectronics Progress, 2021, 58(17): 1722001. (in Chinese)
|
[15] |
马烈, 陈波. 三维成像载荷共孔径光学系统设计[J]. 光学 精密工程,2018,26(9):2326-2333.
doi:10.3788/OPE.20182609.2326
MA L, CHEN B. Optical design of a co-aperture system for 3-D remote sensing payload[J].
Optics and Precision Engineering, 2018, 26(9): 2326-2333. (in Chinese)
doi:10.3788/OPE.20182609.2326
|