Citation: | YANG Tian-yue, GONG Ting, GUO Gu-qing, SUN Xiao-cong, TIAN Ya-li, QIU Xuan-bing, HE Qiu-sheng, GAO Xiao-ming, LI Chuan-liang. Design and achievement of a device for high-precision ammonia gas detection based on laser spectroscopy[J].Chinese Optics, 2023, 16(5): 1129-1136.doi:10.37188/CO.2023-0023 |
Ammonia emission will cause harm to the environment and human health, so it is particularly important that the ammonia concentrations are measured with high precision. Off-Axis Integrating Cavity Output Spectroscopy (OA-ICOS), which has the advantages of high sensitivity and high response speed, is used to design a high-precision ammonia detection device. The gas absorption cell is composed of two high reflection mirrors with a reflectivity of 99.99%, and the base length of the optical resonator is 30 cm. Finally, an optical path of nearly 3000 m was realized. The Distributed Feedback Laser (DFB) with a central wavelength of 1528 nm is tuned to 6548.611 cm−1and 6548.798 cm−1. The concentration of NH3is changed from 1×10−5to 5×10−5and is detected under an atmospheric pressure of 18.6 kPa at room temperature. The measurement results show that the linear fit
[1] |
赵琳, 刘庆岭, 周伟, 等. 工业烟气脱硝技术国内外研究进展[J]. 化学试剂,2021,43(6):747-756.
ZHAO L, LIU Q L, ZHOU W,
et al. Research progress of industrial flue gas denitrification technology[J].
Chemical Reagents, 2021, 43(6): 747-756. (in Chinese)
|
[2] |
LI SH W, CHANG M H, LI H M,
et al. Chemical compositions and source apportionment of PM
2.5during clear and hazy days: seasonal changes and impacts of Youth Olympic Games[J].
Chemosphere, 2020, 256: 127163.
doi:10.1016/j.chemosphere.2020.127163
|
[3] |
李星国. 氢能的发展机遇与面临的挑战[J]. 应用化学,2022,39(7):1157-1166.
LI X G. Development opportunities and challenges of hydrogen energy[J].
Chinese Journal of Applied Chemistry, 2022, 39(7): 1157-1166. (in Chinese)
|
[4] |
程军杰, 曹智, 杨灿然, 等. 便携式远程 诱导击穿光谱系统及其定量分析性能[J]. 应用化学,2022,39(9):1447-1452.
CHENG J J, CAO ZH, YANG C R,
et al. Quantitative analysis with a portable remote laser-induced breakdown spectroscopy system[J].
Chinese Journal of Applied Chemistry, 2022, 39(9): 1447-1452. (in Chinese)
|
[5] |
唐连波, 付大友, 陈琦, 等. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学,2022,39(8):1294-1302.
TANG L B, FU D Y, CHEN Q,
et al. Enhanced gas-liquid chemiluminescence by carbon dots for determination of carbon dioxide[J].
Chinese Journal of Applied Chemistry, 2022, 39(8): 1294-1302. (in Chinese)
|
[6] |
王磊, 宦克为, 刘小溪, 等. 基于卷积神经网络的近红外光谱全流程分析模型研究[J]. 分析化学,2022,50(12):1918-1926.
WANG L, HUAN K W, LIU X X,
et al. Full-range analysis model of near infrared spectroscopy based on convolutional neural network[J].
Chinese Journal of Analytical Chemistry, 2022, 50(12): 1918-1926. (in Chinese)
|
[7] |
李岩, 祁昱, 李赫. 拉曼光谱在感染性疾病诊断中的应用进展[J]. 分析化学,2022,50(3):317-326.
LI Y, QI Y, LI H. Advances of Raman spectroscopy in diagnosis of infectious diseases[J].
Chinese Journal of Analytical Chemistry, 2022, 50(3): 317-326. (in Chinese)
|
[8] |
黄慧, 周亦辰, 彭宇, 等. 基于量子级联 器中红外光谱技术的幽门螺旋杆菌呼气诊断的可行性研究[J]. 分析化学,2022,50(9):1328-1335.
HUANG H, ZHOU Y CH, PENG Y,
et al. Feasibility study of breath diagnosis in
Helicobacter pyloribased on quantum cascade laser mid-infrared spectroscopy[J].
Chinese Journal of Analytical Chemistry, 2022, 50(9): 1328-1335. (in Chinese)
|
[9] |
POGÁNY A, WAGNER S, WERHAHN O,
et al. Development and metrological characterization of a Tunable Diode Laser Absorption Spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor[J].
Applied Spectroscopy, 2015, 69(2): 257-268.
doi:10.1366/14-07575
|
[10] |
DONG L, TITTEL F K, LI CH G,
et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J].
Optics Express, 2016, 24(6): A528-A535.
doi:10.1364/OE.24.00A528
|
[11] |
朱宝余, 孙成勋, 王兰, 等. 氨气检测仪研究现状[J]. 化工进展,2017,36(S1):27-33.
ZHU B Y, SUN CH X, WANG L,
et al. Research status of ammonia gas detector[J].
Chemical Industry and Engineering Progress, 2017, 36(S1): 27-33. (in Chinese)
|
[12] |
FENG SH L, QIU X B, GUO G Q,
et al. Palm-sized laser spectrometer with high robustness and sensitivity for trace gas detection using a novel double-layer toroidal cell[J].
Analytical Chemistry, 2021, 93(10): 4552-4558.
doi:10.1021/acs.analchem.0c04995
|
[13] |
SHAO L G, CHEN J J, WANG K Y,
et al. Highly precise measurement of atmospheric N
2O and CO using improved White cell and RF current perturbation[J].
Sensors and Actuators B:
Chemical, 2022, 352: 130995.
doi:10.1016/j.snb.2021.130995
|
[14] |
ZHANG L W, PANG T, ZHANG Z R,
et al. A novel compact intrinsic safety full range Methane microprobe sensor using "trans-world" processing method based on near-infrared spectroscopy[J].
Sensors and Actuators B:
Chemical, 2021, 334: 129680.
doi:10.1016/j.snb.2021.129680
|
[15] |
GUO Y CH, QIU X B, LI N,
et al. A portable laser-based sensor for detecting H
2S in domestic natural gas[J].
Infrared Physics&
Technology, 2020, 105: 103153.
|
[16] |
TIAN J F, ZHAO G, FLEISHER A J,
et al. Optical feedback linear cavity enhanced absorption spectroscopy[J].
Optics Express, 2021, 29(17): 26831-26840.
doi:10.1364/OE.431934
|
[17] |
CLAPS R, ENGLICH F V, LELEUX D P,
et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy[J].
Applied Optics, 2001, 40(24): 4387-4394.
doi:10.1364/AO.40.004387
|
[18] |
MILLER D J, SUN K, TAO L,
et al. Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements[J].
Atmospheric Measurement Techniques, 2014, 7(1): 81-93.
doi:10.5194/amt-7-81-2014
|
[19] |
GUO X Q, ZHENG F, LI CH L,
et al. A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy[J].
Optics and Lasers in Engineering, 2019, 115: 243-248.
doi:10.1016/j.optlaseng.2018.12.005
|
[20] |
TELFAH H, PAUL A C, LIU J J. Aligning an optical cavity: with reference to cavity ring-down spectroscopy[J].
Applied Optics, 2020, 59(30): 9464-9468.
doi:10.1364/AO.405189
|
[21] |
BAER D S, PAUL J B, GUPTA M,
et al. Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy[J].
Applied Physics B, 2002, 75(2-3): 261-265.
doi:10.1007/s00340-002-0971-z
|
[22] |
贾慧, 郭晓勇, 蔡廷栋, 等. 1.531μm附近NH
3分子痕量探测[J]. 光谱学与光谱分析,2009,29(12):3173-3176.
doi:10.3964/j.issn.1000-0593(2009)12-3173-04
JIA H, GUO X Y, CAI T D,
et al. Trace detection of ammonia at 1.531 μm[J].
Spectroscopy and Spectral Analysis, 2009, 29(12): 3173-3176. (in Chinese)
doi:10.3964/j.issn.1000-0593(2009)12-3173-04
|
[23] |
王坤阳. 基于离轴积分腔光谱大气CO
2和CH
4高精度测量技术研究[D]. 合肥: 中国科学技术大学, 2021.
WANG K Y. In-site measurement of CO
2and CH
4in atmosphere using off-axis integrated cavity spectroscopy[D]. Hefei: University of Science and Technology of China, 2021. (in Chinese)
|
[24] |
FIEDLER S E, HESE A, RUTH A A. Incoherent broad-band cavity-enhanced absorption spectroscopy[J].
Chemical Physics Letters, 2003, 371(3-4): 284-294.
doi:10.1016/S0009-2614(03)00263-X
|
[25] |
袁子豪, 黄印博, 钟磬, 等. V形结构离轴积分腔吸收光谱测量装置设计与研究[J]. 中国 ,2023,50(18):1811001.
YUAN Z H, HUANG Y B, ZHONG Q,
et al. Design and study of V-shaped structure off-axis integrated cavity absorption spectroscopy[J].
Chinese Journal of Lasers, 2023, 50(18): 1811001. (in Chinese)
|