Volume 16Issue 3
May 2023
Turn off MathJax
Article Contents
ZHANG Bei-long, LI Jin-hua, LU Dong-xiao, ZHANG Ke-xin, WANG Xiao-jun, MA Li. Graphene quantum dots fluorescence enhancement and pH response characteristics[J]. Chinese Optics, 2023, 16(3): 523-534. doi: 10.37188/CO.2023-0053
Citation: ZHANG Bei-long, LI Jin-hua, LU Dong-xiao, ZHANG Ke-xin, WANG Xiao-jun, MA Li. Graphene quantum dots fluorescence enhancement and pH response characteristics[J].Chinese Optics, 2023, 16(3): 523-534.doi:10.37188/CO.2023-0053

Graphene quantum dots fluorescence enhancement and pH response characteristics

doi:10.37188/CO.2023-0053
Funds:Supported by National Natural Science Foundation of China (No. 62174015); the “111” Project of China (No. D17017); the Developing Project of Science and Technology of Jilin Province (No. YDZJ202301ZYTS488, No. JJKH20220723KJ)
More Information
  • In this paper, the effect of the cross-linking agent 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) on the optical properties of graphene quantum dots (GQDs) and the reasons are investigated in detail. GQDs were prepared by a hydrothermal method and reacted with EDC to obtain GQDs/EDC composites. The spectral properties of GQDs and GQDs/EDC were investigated. The effect of pH on the fluorescence of GQDs/EDC and its mechanism were investigated using PBS solution and artificial gastric juice samples. The experimental results show that EDC passives the surface defects of GQDs, making the fluorescence of GQDs increase rapidly in <1 min time and remain stable up to 20 min. Under different EDC contents the fluorescence intensity of GQDs/EDC is significantly enhanced by about 264 times compared to GQDs alone. The pH response experiments shows that GQDs/EDC had a linear response pattern of fluorescence and absorption intensity in the pH range of 1.75−4.01 and 4.01−9.28. Biocompatibility showed that the cell viability of human breast cancer cells was greater than 80% at sample concentrations of 25−300 µg/mL and remained at 74% even at high concentrations of 500 µg/mL; Finally, the detection of artificial gastric pH has high accuracy with relative standard deviation RSD ≤1.10%. The EDC-mediated fluorescence enhancement makes GQDs more advantageous in the fields of detection, sensing and imaging. Besides, the sensitive pH response characteristics of GQDs/EDC provide a good prospect for pH detection applications.

  • loading
  • [1]
    ZHANG M K, LIU W D, GONG Y P, et al. Graphene/quantum dot heterostructure photodetectors: from material to performance[J]. Advanced Optical Materials, 2022, 10(24): 2201889. doi:10.1002/adom.202201889
    [2]
    KAUR A, PANDEY K, KAUR R, et al. Nanocomposites of carbon quantum dots and graphene quantum dots: environmental applications as sensors[J]. Chemosensors, 2022, 10(9): 367. doi:10.3390/chemosensors10090367
    [3]
    BARATI F, AVATEFI M, MOGHADAM N B, et al. A review of graphene quantum dots and their potential biomedical applications[J]. Journal of Biomaterials Applications, 2023, 37(7): 1137-1158. doi:10.1177/08853282221125311
    [4]
    ROY D, FOUZDER C, MUKHUTY A, et al. Designed synthesis of dual emitting silicon quantum dot for cell imaging: direct labeling of alpha 2-HS-glycoprotein[J]. Bioconjugate Chemistry, 2019, 30(5): 1575-1583. doi:10.1021/acs.bioconjchem.9b00279
    [5]
    GIDWANI B, SAHU V, SHUKLA S S, et al. Quantum dots: prospectives, toxicity, advances and applications[J]. Journal of Drug Delivery Science and Technology, 2021, 61: 102308. doi:10.1016/j.jddst.2020.102308
    [6]
    WADHWA S, JOHN A T, NAGABOOSHANAM S, et al. Graphene quantum dot-gold hybrid nanoparticles integrated aptasensor for ultra-sensitive detection of vitamin D 3towards point-of-care application[J]. Applied Surface Science, 2020, 521: 146427. doi:10.1016/j.apsusc.2020.146427
    [7]
    XUE G, YU S, QIANG ZH, et al. Application of maleimide modified graphene quantum dots and porphyrin fluorescence resonance energy transfer in the design of ‘‘turn-on’’ fluorescence sensors for biothiols[J]. Analytica Chimica Acta, 2020, 1108: 46-53. doi:10.1016/j.aca.2020.01.062
    [8]
    ZHU SH J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective[J]. Nano Research, 2015, 8(2): 355-381. doi:10.1007/s12274-014-0644-3
    [9]
    PAN J H, ZHENG Z Y, YANG J Y, et al. A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots[J]. Talanta, 2017, 166: 1-7. doi:10.1016/j.talanta.2017.01.033
    [10]
    HE T, QI L, ZHANG J, et al. Enhanced graphene quantum dot fluorescence nanosensor for highly sensitive acetylcholinesterase assay and inhibitor screening[J]. Sensors and Actuators B: Chemical, 2015, 215: 24-29. doi:10.1016/j.snb.2015.03.043
    [11]
    ACHADU O J, BRITTON J, NYOKONG T. Graphene quantum dots functionalized with 4-amino-2, 2, 6, 6-tetramethylpiperidine-N-oxide as fluorescence “turn-ON” nanosensors[J]. Journal of Fluorescence, 2016, 26(6): 2199-2212. doi:10.1007/s10895-016-1916-y
    [12]
    JIN L, WANG Y, YAN F K, et al. The synthesis and application of nitrogen-doped graphene quantum dots on brilliant blue detection[J]. Journal of Nanomaterials, 2019, 2019: 1471728.
    [13]
    DONG Y Q, LIN J P, CHEN Y M, et al. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals[J]. Nanoscale, 2014, 6(13): 7410-7415. doi:10.1039/C4NR01482K
    [14]
    于宏伟, 王晓萱, 张雨萱, 等. 柠檬酸中红外光谱研究[J]. 江苏调味副食品,2021(1):29-32.

    YU H W, WANG X X, ZHANG Y X, et al. On the infrared spectroscopy of citric acid[J]. Jiangsu Condiment and Subsidiary Food, 2021(1): 29-32. (in Chinese)
    [15]
    DONG Y Q, SHAO J W, CHEN C Q, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid[J]. Carbon, 2012, 50(12): 4738-4743. doi:10.1016/j.carbon.2012.06.002
    [16]
    ZHUANG Q F, WANG Y, NI Y N. Solid-phase synthesis of graphene quantum dots from the food additive citric acid under microwave irradiation and their use in live-cell imaging[J]. Luminescence, 2016, 31(3): 746-753. doi:10.1002/bio.3019
    [17]
    SAMRA K S, MANPREET, SINGH A. Facile synthesis of graphene quantum dots and their optical characterization[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2021, 29(8): 638-642. doi:10.1080/1536383X.2021.1878152
    [18]
    FACURE M H M, SCHNEIDER R, MERCANTE L A, et al. Rational hydrothermal synthesis of graphene quantum dots with optimized luminescent properties for sensing applications[J]. Materials Today Chemistry, 2022, 23: 100755. doi:10.1016/j.mtchem.2021.100755
    [19]
    PANYATHIP R, SUCHARITAKUL S, PHADUANGDHITIDHADA S, et al. Surface enhanced Raman scattering in graphene quantum dots grown via electrochemical process[J]. Molecules, 2021, 26(18): 5484. doi:10.3390/molecules26185484
    [20]
    GAO L, WANG Y W, LU M, et al. Simple method for O-GlcNAc sensitive detection based on graphene quantum dots[J]. RSC Advances, 2017, 7(50): 31204-31211. doi:10.1039/C7RA02643A
    [21]
    MURPHY K R. A note on determining the extent of the water Raman peak in fluorescence spectroscopy[J]. Applied Spectroscopy, 2011, 65(2): 233-236. doi:10.1366/10-06136
    [22]
    KHARANGARH P R, UMAPATHY S, SINGH G. Investigation of sulfur related defects in graphene quantum dots for tuning photoluminescence and high quantum yield[J]. Applied Surface Science, 2018, 449: 363-370. doi:10.1016/j.apsusc.2018.01.026
    [23]
    QU D, ZHANG M, LI J, et al. Tailoring color emission from N-doped graphene quantum dots for bioimaging applications[J]. Light: Science& Application, 2015, 4(12): e364. doi:10.1038/lsa.2015.137
    [24]
    ZHU SH J, SHAO J R, SONG Y B, et al. Investigating the surface state of graphene quantum dots[J]. Nanoscale, 2015, 7(17): 7927-7933. doi:10.1039/C5NR01178G
    [25]
    CHUNG S, REVIA R A, ZHANG M Q. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy[J]. Advanced Materials, 2021, 33(22): 1904362. doi:10.1002/adma.201904362
    [26]
    PU CH D, QIN H Y, GAO Y, et al. Synthetic control of exciton behavior in colloidal quantum dots[J]. Journal of the American Chemical Society, 2017, 139(9): 3302-3311. doi:10.1021/jacs.6b11431
    [27]
    WANG L, ZHU SH J, WANG H Y, et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots[J]. ACS Nano, 2014, 8(3): 2541-2547. doi:10.1021/nn500368m
    [28]
    SONG ZH Q, QUAN F Y, XU Y H, et al. Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione[J]. Carbon, 2016, 104: 169-178. doi:10.1016/j.carbon.2016.04.003
    [29]
    SAFAVI A, AHMADI R, MOHAMMADPOUR Z, et al. Fluorescent pH nanosensor based on carbon nanodots for monitoring minor intracellular pH changes[J]. RSC Advances, 2016, 6(106): 104657-104664. doi:10.1039/C6RA21556D
    [30]
    LIU J H, LI J ZH, XU L Q, et al. Facile synthesis of N, B-doped carbon dots and their application for multisensor and cellular imaging[J]. Industrial& Engineering Chemistry Research, 2017, 56(14): 3905-3912.
    [31]
    KURNIAWAN D, CHIANG W H. Microplasma-enabled colloidal nitrogen-doped graphene quantum dots for broad-range fluorescent pH sensors[J]. Carbon, 2020, 167: 675-684. doi:10.1016/j.carbon.2020.05.085
    [32]
    RAKHSHAEI R, NAMAZI H, HAMISHEHKAR H, et al. Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties[J]. International Journal of Biological Macromolecules, 2020, 150: 1121-1129. doi:10.1016/j.ijbiomac.2019.10.118
    [33]
    FAN Z T, ZHOU SH X, GARCIA C, et al. pH-responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis[J]. Nanoscale, 2017, 9(15): 4928-4933. doi:10.1039/C7NR00888K
    [34]
    KOKTYSH D S. Ratiometric pH sensor using luminescent CuInS 2/ZnS quantum dots and fluorescein[J]. Materials Research Bulletin, 2020, 123: 110686. doi:10.1016/j.materresbull.2019.110686
    [35]
    AI L, YANG Y S, WANG B Y, et al. . Insights into photoluminescence mechanisms of carbon dots: advances and perspectives[J]. Science Bulletin, 2021, 66(8): 839-856.
    [36]
    TACHI S, MORITA H, TAKAHASHI M, et al. Quantum yield enhancement in graphene quantum dots via esterification with benzyl alcohol[J]. Scientific Reports, 2019, 9(1): 14115. doi:10.1038/s41598-019-50666-3
    [37]
    ZHANG L, ZHANG ZH Y, LIANG R P, et al. Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement[J]. Analytical Chemistry, 2014, 86(9): 4423-4430. doi:10.1021/ac500289c
    [38]
    VÝBORNÝ K, VALLOVÁ J, KOČÍ Z, et al. Genipin and EDC crosslinking of extracellular matrix hydrogel derived from human umbilical cord for neural tissue repair[J]. Scientific Reports, 2019, 9(1): 10674. doi:10.1038/s41598-019-47059-x
    [39]
    MARTINSEN T C, BERGH K, WALDUM H L. Gastric juice: a barrier against infectious diseases[J]. Basic& Clinical Pharmacology& Toxicology, 2005, 96(2): 94-102.
    [40]
    MAKOLA D, PEURA D A, CROWE S E. Helicobacter pylori infection and related gastrointestinal diseases[J]. Journal of Clinical Gastroenterology, 2007, 41(6): 548-558. doi:10.1097/MCG.0b013e318030e3c3
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)/Tables(2)

    Article views(237) PDF downloads(115) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map