Volume 17Issue 1
Jan. 2024
Turn off MathJax
Article Contents
WANG Jin-yan, MA Fang, ZHENG Lei, TIAN Dong-he, CHEN Xi, ZHENG Quan. An ultraviolet laser at 228 nm with adjustable repetition rate and narrow pulse width[J]. Chinese Optics, 2024, 17(1): 100-107. doi: 10.37188/CO.2023-0058
Citation: WANG Jin-yan, MA Fang, ZHENG Lei, TIAN Dong-he, CHEN Xi, ZHENG Quan. An ultraviolet laser at 228 nm with adjustable repetition rate and narrow pulse width[J].Chinese Optics, 2024, 17(1): 100-107.doi:10.37188/CO.2023-0058

An ultraviolet laser at 228 nm with adjustable repetition rate and narrow pulse width

doi:10.37188/CO.2023-0058
Funds:Supported by key Research and Development Plan of Jilin Province (No. 20220201088GX)
More Information
  • Corresponding author:chenxi@cnilaser.com
  • Received Date:31 Mar 2023
  • Rev Recd Date:19 Apr 2023
  • Available Online:13 Jul 2023
  • Ultraviolet lasers play an important role in the study of ultraviolet resonance Raman spectroscopy. The Raman signals can be enhanced by the resonant Raman effect, thereby reducing the detection limit of Raman measurement. We focus on the study of a narrow-pulse all-solid-state ultraviolet laser with an output wavelength of 228 nm. The Nd:YVO4is used as the gain medium and the electro-optic Q-switched cavity dumped technique is applied to achieve a fundamental frequency output of 914 nm in pulse width of several nanoseconds. Then, the second-harmonic light is generated by LiB3O5(LBO), and the fourth-harmonic 228 nm UV laser is obtained by beta-barium-borate (BBO) crystal. On this basis, further research has been conducted on the variation of fundamental and second harmonic laser power at different repetition rates. Due to the low gain of Nd:YVO4at 914 nm, the average power of the laser is saturated and decreases with increased repetition rate. The output efficiency of UV laser is optimized by adjusting the focus lens. At the pump power of 30 W and the repetition frequency of 10 kHz, a 228 nm UV laser output with the highest average power of 84 mW is obtained. The UV laser is continuously adjustable within the range of 5−25 kHz repetition frequency and the pulse width is maintained at 2.8 to 2.9 ns, which meets the application requirements in the field of UV spectroscopy detection technology.

  • loading
  • [1]
    何玉青, 魏帅迎, 郭一新, 等. 远程紫外拉曼光谱检测技术研究进展[J]. 中国光学,2019,12(6):1249-1259. doi:10.3788/co.20191206.1249

    HE Y Q, WEI SH Y, GUO Y X, et al. Research progress of remote detection with ultraviolet Raman spectroscopy[J]. Chinese Optics, 2019, 12(6): 1249-1259. (in Chinese) doi:10.3788/co.20191206.1249
    [2]
    吉于今, 楚学影, 董旭, 等. 紫外偏振敏感的CsPbBr 3纳米薄膜的可见光发射(英文)[J]. 中国光学(中英文),2023,16(1):202-213. doi:10.37188/CO.2022-0152

    JI Y J, CHU X Y, DONG X, et al. Visible light emission of ultraviolet polarization sensitive CsPbBr 3nano-films[J]. Chinese Optics, 2023, 16(1): 202-213. (in Chinese) doi:10.37188/CO.2022-0152
    [3]
    HOLTUM T, BLOINO J, PAPPAS C, et al. Ultraviolet resonance Raman spectroscopy of anthracene: experiment and theory[J]. Journal of Raman Spectroscopy, 2021, 52(12): 2292-2300. doi:10.1002/jrs.6223
    [4]
    KUMAMOTO Y, TAGUCHI A, KAWATA S. Deep-ultraviolet biomolecular imaging and analysis[J]. Advanced Optical Materials, 2019, 7(5): 1801099. doi:10.1002/adom.201801099
    [5]
    OJAGHI A, CARRAZANA G, CARUSO C, et al. Label-free hematology analysis using deep-ultraviolet microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14779-14789. doi:10.1073/pnas.2001404117
    [6]
    SOLTANI S, OJAGHI A, ROBLES F E. Deep UV dispersion and absorption spectroscopy of biomolecules[J]. Biomedical Optics Express, 2019, 10(2): 487-499. doi:10.1364/BOE.10.000487
    [7]
    SOLTANI S, OJAGHI A, QIAO H, et al. Prostate cancer histopathology using label-free multispectral deep-UV microscopy quantifies phenotypes of tumor aggressiveness and enables multiple diagnostic virtual stains[J]. Scientific Reports, 2022, 12(1): 9329. doi:10.1038/s41598-022-13332-9
    [8]
    WYNN C M, PALMACCI S, KUNZ R R, et al. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence[J]. Optics Express, 2010, 18(6): 5399-5406. doi:10.1364/OE.18.005399
    [9]
    GAGNÉ M, KASHYAP R. New nanosecond Q-switched Nd: VO 4laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication[J]. Optics Communications, 2010, 283(24): 5028-5032. doi:10.1016/j.optcom.2010.07.074
    [10]
    牛娜, 窦微, 浦双双, 等. 蓝光二极管抽运Pr: YLF腔内倍频连续深紫外 器[J]. 中国光学,2021,14(6):1395-1399. doi:10.37188/CO.2021-0077

    NIU N, DOU W, PU SH SH, et al. Continuous deep ultraviolet laser by intracavity frequency doubling of blue laser diode pumped Pr: YLF[J]. Chinese Optics, 2021, 14(6): 1395-1399. (in Chinese) doi:10.37188/CO.2021-0077
    [11]
    DEYRA L, MARTIAL I, DIDIERJEAN J, et al. Deep-UV 236.5 nm laser by fourth-harmonic generation of a single-crystal fiber Nd: YAG oscillator[J]. Optics Letters, 2014, 39(8): 2236-2239. doi:10.1364/OL.39.002236
    [12]
    KANEDA Y, YARBOROUGH J M, MERZLYAK Y, et al. Continuous-wave, single-frequency 229 nm laser source for laser cooling of cadmium atoms[J]. Optics Letters, 2016, 41(4): 705-708. doi:10.1364/OL.41.000705
    [13]
    BYKOV S V, ROPPEL R D, MAO M, et al. 228-nm quadrupled quasi-three-level Nd: GdVO 4laser for ultraviolet resonance Raman spectroscopy of explosives and biological molecules[J]. Journal of Raman Spectroscopy, 2020, 51(12): 2478-2488. doi:10.1002/jrs.5999
    [14]
    DAI SH T, JIANG T, WU H CH, et al. Tunable narrow-linewidth 226 nm laser for hypersonic flow velocimetry[J]. Optics Letters, 2020, 45(8): 2291-2294. doi:10.1364/OL.390347
    [15]
    石朝辉, 刘学松, 黄玉涛, 等. 500 kHz, 6 ns高重复频率电光腔倒空Nd: YVO 4 器[J]. 中国 ,2014,41(10):1002006. doi:10.3788/CJL201441.1002006

    SHI ZH H, LIU X S, HUANG Y T, et al. 500 kHz, 6 ns high repetition-rate electro-optical cavity dumped Nd: YVO 4laser[J]. Chinese Journal of Lasers, 2014, 41(10): 1002006. (in Chinese) doi:10.3788/CJL201441.1002006
    [16]
    LIU K, CHEN Y, LI F Q, et al. High peak power 4.7 ns electro-optic cavity dumped TEM 001342-nm Nd: YVO 4laser[J]. Applied Optics, 2015, 54(4): 717-720. doi:10.1364/AO.54.000717
    [17]
    YU X, WANG C, MA Y F, et al. Performance improvement of high repetition rate electro-optical cavity-dumped Nd: GdVO 4laser[J]. Applied Physics B, 2012, 106(2): 309-313. doi:10.1007/s00340-011-4786-7
    [18]
    LIU K, HE L J, BO Y, et al. Pulse width adjustable Q-switched cavity dumped laser by rotating a quarter-wave plate and a Pockels cell[J]. Optics Letters, 2017, 42(13): 2467-2470. doi:10.1364/OL.42.002467
    [19]
    CHEN F, SUN J J, YAN R P, et al. Reabsorption cross section of Nd 3+-doped quasi-three-level lasers[J]. Scientific Reports, 2019, 9(1): 5620. doi:10.1038/s41598-019-42012-4
    [20]
    王晓洋, 刘丽娟. 深紫外非线性光学晶体及全固态深紫外相干光源研究进展[J]. 中国光学,2020,13(3):427-441.

    WANG X Y, LIU L J. Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources[J]. Chinese Optics, 2020, 13(3): 427-441. (in Chinese)
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(152) PDF downloads(97) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map