Turn off MathJax
Article Contents
WANG Zhen-yu, FU Xiu-hua, LIN Zhao-wen, HUANG Jian-shan, WEI Yu-jun, WU Gui-qing, PAN Yong-gang, DONG Suo-tao, WANG Ben. Development of high-precision beam splitter for inter-satellite communication system[J]. Chinese Optics. doi: 10.37188/CO.2023-0100
Citation: WANG Zhen-yu, FU Xiu-hua, LIN Zhao-wen, HUANG Jian-shan, WEI Yu-jun, WU Gui-qing, PAN Yong-gang, DONG Suo-tao, WANG Ben. Development of high-precision beam splitter for inter-satellite communication system[J].Chinese Optics.doi:10.37188/CO.2023-0100

Development of high-precision beam splitter for inter-satellite communication system

doi:10.37188/CO.2023-0100
Funds:Supported by the second batch of social welfare and basic research projects in Zhongshan city in 2022 (No. 2022B2005)、Changchun Laser Manufacturing and Testing Equipment Science and Technology Innovation Center Changhe (No. 2014219)
More Information
  • Corresponding author:goptics@126.com
  • Available Online:28 Sep 2023
  • With the rapid development of inter-satellite communication systems, the requirements for data transmission accuracy are constantly increasing. As the core component, the spectral characteristics and surface shape accuracy of the beam splitter directly affect the transmission accuracy of the whole system. In this paper, based on the interference theory of thin film, Ta2O5and SiO2were selected as the high and low refractive index film materials for the design of the film system, and electron beam evaporation was used to prepare a high-precision beam splitter on a quartz substrate. At the same time, a surface shape correction model was established based on the principle of film stress compensation to control the surface shape. Through the detection of a spectral analyzer, the transmittance of beam splitter is greater than 98% at 1563 nm and the reflectance is greater than 99% at 1540 nm within the incidence range of 21.5° to 23.5°. The surface shape was measured by laser interferometer, the reflective surface shape accuracy RMS is corrected from λ/10 to λ/90 (λ=632.8 nm), and the transmissive optical surface shape accuracy RMS is λ/90.

  • loading
  • [1]
    刘旭光, 钱志升, 周继航, 等. “星链”卫星系统及国内卫星互联网星座发展思考[J]. 通信技术,2022,55(2):197-204. doi:10.3969/j.issn.1002-0802.2022.02.010

    LIU X G, QIAN ZH SH, ZHOU J H, et al. Thinking on the development of “starlink” satellite system and domestic satellite internet constellation[J]. Communications Technology, 2022, 55(2): 197-204. (in Chinese). doi:10.3969/j.issn.1002-0802.2022.02.010
    [2]
    李锐, 林宝军, 刘迎春, 等. 星间链路发展综述: 现状、趋势、展望[J]. 红外与 工程,2023,52(3):20220393. doi:10.3788/IRLA20220393

    LI R, LIN B J, LIU Y CH, et al. Review on laser intersatellite link: current status, trends, and prospects[J]. Infrared and Laser Engineering, 2023, 52(3): 20220393. (in Chinese). doi:10.3788/IRLA20220393
    [3]
    王燕, 陈培永, 宋义伟, 等. 国外空间 通信技术的发展现状与趋势[J]. 飞控与探测,2019,2(1):8-16.

    WANG Y, CHEN P Y, SONG Y W, et al. Progress on the development and trend of overseas space laser communication technology[J]. Flight Control & Detection, 2019, 2(1): 8-16. (in Chinese).
    [4]
    高铎瑞, 李天伦, 孙悦, 等. 空间 通信最新进展与发展趋势[J]. 中国光学,2018,11(6):901-913. doi:10.3788/co.20181106.0901

    GAO D R, LI T L, SUN Y, et al. Latest developments and trends of space laser communication[J]. Chinese Optics, 2018, 11(6): 901-913. (in Chinese). doi:10.3788/co.20181106.0901
    [5]
    夏方园, 汪勃, 张国亭, 等. 星间链路终端技术发展与展望[J]. 光学技术,2023,49(2):175-183.

    XIA F Y, WANG B, ZHANG G T, et al. Recent development and prospective of inter-satellite laser links terminal technology[J]. Optical Technique, 2023, 49(2): 175-183. (in Chinese).
    [6]
    樊彦峥. 大口径镜面高反射膜制备及面形控制技术[D]. 西安: 西安工业大学, 2021.

    FAN Y ZH. Deposition and surface shape control technology of large-aperture mirror high-reflection film[D]. Xi’an: Xi’an Technological University, 2021. (in Chinese).
    [7]
    高伟饶, 董科研, 江伦. 单波长 通信终端的隔离度[J]. 中国光学.doi: 10.37188/CO.2022-0253.

    GAO W R, DONG K Y, JIANG L. Isolation of single wavelength laser communication terminals[J]. Chinese Optics.doi: 10.37188/CO.2022-0253. (in Chinese).
    [8]
    李波, 王超, 闫涛, 等. 多层高反膜的应力研究[J]. 真空与低温,2023,29(2):146-152. doi:10.3969/j.issn.1006-7086.2023.02.007

    LI B, WANG CH, YAN T, et al. Stress study of multi-layer high reflection films[J]. Vacuum and Cryogenics, 2023, 29(2): 146-152. (in Chinese). doi:10.3969/j.issn.1006-7086.2023.02.007
    [9]
    李阳, 徐均琪, 刘政, 等. 残余应力对介质高反膜面型影响的研究[J]. 真空科学与技术学报,2021,41(5):484-490. doi:10.13922/j.cnki.cjvst.202009001

    LI Y, XU J Q, LIU ZH, et al. Study on the influence of residual stress on dielectric high reflection films[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(5): 484-490. (in Chinese). doi:10.13922/j.cnki.cjvst.202009001
    [10]
    白金林, 姜玉刚, 王利栓, 等. 超低面形宽带高反射薄膜设计及制备技术研究[J]. 红外与 工程,2021,50(2):20200413. doi:10.3788/IRLA20200413

    BAI J L, JIANG Y G, WANG L SH, et al. Study on infrared anti-reflection performance of diamond film with surface microstructure[J]. Infrared and Laser Engineering, 2021, 50(2): 20200413. (in Chinese). doi:10.3788/IRLA20200413
    [11]
    OHRING M. Materials Science of Thin Films[M]. 2nd ed. San Diego: Academic Press, 2001: 436-439.
    [12]
    王凯旋, 陈刚, 刘定权, 等. 绿光波段60 pm超窄带滤光片的研制[J]. 中国光学,2022,15(1):119-131.

    WANG K X, CHEN G, LIU D Q, et al. Fabrication of an ultra-narrow band-pass filter with 60 pm bandwidth in green light band[J]. Chinese Optics, 2022, 15(1): 119-131. (in Chinese).
    [13]
    田晓习. 光学薄膜技术中的基片与薄膜热力学匹配问题研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2020.

    TIAN X X. Study on thermodynamic matching between substrate and films in optical thin film technology[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Science), 2020. (in Chinese).
    [14]
    STONEY G G. The tension of metallic films deposited by electrolysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1909, 82(553): 172-175.
    [15]
    GRIGORIEV F V, SULIMOV V B, TIKHONRAVOV A V. Atomistic simulation of stresses in growing silicon dioxide films[J]. Coatings, 2020, 10(3): 220. doi:10.3390/coatings10030220
    [16]
    潘永刚, 林兆文, 王奔, 等. 深紫外大口径非球面反射膜的均匀性研究[J]. 中国光学(中英文),2022,15(4):740-746. doi:10.37188/CO.2022-0005

    PAN Y G, LIN ZH W, WANG B, et al. Film thickness uniformity of deep ultraviolet large aperture aspheric mirror[J]. Chinese Optics, 2022, 15(4): 740-746. (in Chinese). doi:10.37188/CO.2022-0005
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)/Tables(7)

    Article views(76) PDF downloads(27) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map