Turn off MathJax
Article Contents
PEI Zi-yi, HU Peng-bing, PAN Sun-qiang, QI Hai-yang, LIU Su-mei, LIU Dong. Design of a highly sensitive photoelectric detection circuit for TDLAS gas laser telemetry[J]. Chinese Optics. doi: 10.37188/CO.2023-0107
Citation: PEI Zi-yi, HU Peng-bing, PAN Sun-qiang, QI Hai-yang, LIU Su-mei, LIU Dong. Design of a highly sensitive photoelectric detection circuit for TDLAS gas laser telemetry[J].Chinese Optics.doi:10.37188/CO.2023-0107

Design of a highly sensitive photoelectric detection circuit for TDLAS gas laser telemetry

doi:10.37188/CO.2023-0107
Funds:Supported by the“Pioneer” and “Leading Goose” R&D Program of Zhejiang (No. 2022C03065,2022C03162,2022C03084). Science and Technology Plan Program, Eagle Plan Training Program of Marketing Surveillance & Administration Bureau of Zhejiang Province (No. QN2023419, No. CY2023001).
More Information
  • Corresponding author:liudongopt@zju.edu.cn
  • Received Date:25 Jun 2023
  • Rev Recd Date:20 Jul 2023
  • Available Online:23 Nov 2023
  • Aming at the characterstics of weak gas laser telemetry optical signals and strong interference from environmental factors, a Highly Sensitive Photoelectric Detection Circuit (HSPDC) for TDLAS laser telemetry based on wavelength modulation technology has been designed and investigated. In addition, a noise suppression method for TDLAS signals based on wavelength modulation technology was determined. The photodiode ideal model is utilized to analyze the linear response characteristics of the photodetector circuit and determine the essential photodiode parameters. Based on the cascade amplification principle, the HSPDC is designed, simulated, and tested, achieving a lower limit of optical power detection of 0.11 nW, a signal attenuation of 0.79 dB ( f =10 kHz). The cutoff frequency is one order of magnitude higher than the existing 108V/A cross-impedance amplification circuit. Therefore, the HSPDC is applicable for high-speed modulation of weak optical signals. The laser telemetry system exhibits excellent detection performance at a modulation frequency of 3 kHz, with a detection sensitivity of 88.66 mV/ppm, a detection limit of less than 0.565 ppm, and a linear fit R 2of 0.9996. The study demonstrates that the HSPDC photoelectric detection circuit has the advantages of fast response, high detection sensitivity and accuracy. Thus, it can be integrated to meet the needs of gas laser telemetry applications.

  • loading
  • [1]
    YU S F, ZHANG ZH, XIA H Y, et al. Photon-counting distributed free-space spectroscopy[J]. Light:Science & Applications, 2021, 10(1): 212.
    [2]
    CHEN S J, TONG B W, RUSSELL L M, et al. Lidar-based daytime boundary layer height variation and impact on the regional satellite-based PM 2.5estimate[J]. Remote Sensing of Environment, 2022, 291: 113224.
    [3]
    XIAO D, WANG N CH, CHEN S J, et al. Simultaneous profiling of dust aerosol mass concentration and optical properties with polarized high-spectral-resolution lidar[J]. Science of the Total Environment, 2023, 872: 162091. doi:10.1016/j.scitotenv.2023.162091
    [4]
    ZHANG K, CHEN Y T, ZHAO H K, et al. Comprehensive, continuous, and vertical measurements of seawater constituents with triple-field-of-view high-spectral-resolution lidar[J]. Research, 2023, 6: 0201. doi:10.34133/research.0201
    [5]
    WANG N CH, ZHANG K, SHEN X, et al. Dual-field-of-view high-spectral-resolution lidar: Simultaneous profiling of aerosol and water cloud to study aerosol-cloud interaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(10): e2110756119.
    [6]
    KE J, SUN Y SH, DONG CH ZH, et al. Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: retrieval algorithm and airborne demonstration[J]. PhotoniX, 2022, 3: 17. doi:10.1186/s43074-022-00063-3
    [7]
    WEN L, SUN ZH W, ZHENG Q L et al. On-chip ultrasensitive and rapid hydrogen sensing based on plasmon-induced hot electron–molecule interaction[J]. Light:Science & Applications, 2023, 12: 76.
    [8]
    WU L M, YUAN X X, TANG Y X, et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices[J]. PhotoniX, 2023, 4(1): 15. doi:10.1186/s43074-023-00091-7
    [9]
    LEE J, YU E S, KIM T, et al. Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction[J]. PhotoniX, 2023, 4(1): 20. doi:10.1186/s43074-023-00097-1
    [10]
    ZHANG CH X, LIU CH, HU Q H, et al. Satellite UV-Vis spectroscopy: implications for air quality trends and their driving forces in China during 2005-2017[J]. Light:Science & Applications, 2021, 8: 100.
    [11]
    VLK M, DATTA A, ALBERTI S, et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy[J]. Light:Science & Applications, 2021, 10(1): 26.
    [12]
    DENG Y, FAN ZH F, ZHAO B B, et al. Mid-infrared hyperchaos of interband cascade lasers[J]. Light:Science & Applications, 2021, 11(1): 7.
    [13]
    MARINOV E, MARTINS R J, YOUSSEF M A B, et al. Overcoming the limitations of 3D sensors with wide field of view metasurface-enhanced scanning lidar[J]. Advanced Photonics, 2023, 5(4): 046005.
    [14]
    HUANG ZH T, CHANG C Y, CHEN K P, et al. Tunable lasing direction in one-dimensional suspended high-contrast grating using bound states in the continuum[J]. Advanced Photonics, 2022, 4(6): 066004.
    [15]
    张志荣, 夏滑, 孙鹏帅, 等. 基于高灵敏 吸收光谱技术的稳定气态同位素测量及其应用(特邀)[J]. 光子学报,2023,52(3):0352108. doi:10.3788/gzxb20235203.0352108

    ZHANG ZH R, XIA H, SUN P SH, et al. Stable gaseous isotope measurement method based on highly sensitive laser absorption spectroscopy and its applications (invited)[J]. Acta Photonica Sinica, 2023, 52(3): 0352108. (in Chinese). doi:10.3788/gzxb20235203.0352108
    [16]
    钟笠, 宋迪, 焦月, 等. 具有复杂光谱特征的丙烯气体的TDLAS检测技术研究[J]. 中国光学,2020,13(5):1044-1054. doi:10.37188/CO.2019-0203

    ZHONG L, SONG D, JIAO Y, et al. TDLAS detection of propylene with complex spectral features[J]. Chinese Optics, 2020, 13(5): 1044-1054. (in Chinese). doi:10.37188/CO.2019-0203
    [17]
    张伟建, 曾祥龙, 杨傲, 等. 纳米金涂覆微纳光纤的倏逝场氨气检测研究[J]. 光电工程,2021,48(9):200451.

    ZHANG W J, ZENG X L, YANG A, et al. Research on evanescent field ammonia detection with gold-nanosphere coated microfibers[J]. Opto-Electronic Engineering, 2021, 48(9): 200451. (in Chinese).
    [18]
    姚路, 刘文清, 刘建国, 等. 基于TDLAS的长光程环境大气痕量CO监测方法研究[J]. 中国 ,2015,42(2):0215003. doi:10.3788/CJL201542.0215003

    YAO L, LIU W Q, LIU J G, et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]. Chinese Journal of Lasers, 2015, 42(2): 0215003. (in Chinese). doi:10.3788/CJL201542.0215003
    [19]
    XIN F X, LI J, GUO J J, et al. Measurement of atmospheric CO 2column concentrations based on open-path TDLAS[J]. Sensors, 2021, 21(5): 1722. doi:10.3390/s21051722
    [20]
    REN L, WANG X CH, HUANG G R, et al. Contribution of microchannel plate luminescence to the noise of 20-inch photomultiplier tubes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1022: 165973.
    [21]
    SUZUKI S, NAMEKATA N, TSUJINO K, et al. Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode[J]. Applied Physics Letters, 2014, 104(4): 041105. doi:10.1063/1.4861645
    [22]
    顾宇强, 谭明, 吴渊渊, 等. 具有优化倍增层InAlAs/InGaAs雪崩光电二极管[J]. 红外与毫米波学报,2021,40(6):715-720.

    GU Y Q, TAN M, WU Y Y, et al. InAlAs/InGaAs avalanche photodiode with an optimized multiplication layer[J]. J. Infrared Millim. Waves, 2021, 40(6): 715-720. (in Chinese).
    [23]
    杨舒涵, 乔顺达, 林殿阳, 等. 基于可调谐半导体 吸收光谱的氧气浓度高灵敏度检测研究[J]. 中国光学(中英文),2023,16(1):151-157. doi:10.37188/CO.2022-0029

    YANG SH H, QIAO SH D, LIN D Y, et al. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese Optics, 2023, 16(1): 151-157. (in Chinese). doi:10.37188/CO.2022-0029
    [24]
    王彪, 鹿洪飞, 李奥奇, 等. 采用VCSEL 光源的TDLAS甲烷检测系统的研制[J]. 红外与 工程,2020,49(4):0405002. doi:10.3788/IRLA202049.0405002

    WANG B, LU H F, LI A Q, et al. Research of TDLAS methane detection system using VCSEL laser as the light source[J]. Infrared and Laser Engineering, 2020, 49(4): 0405002. (in Chinese). doi:10.3788/IRLA202049.0405002
    [25]
    CIURA Ł, KOLEK A, GAWRON W, et al. Measurements of low frequency noise of infrared photo-detectors with transimpedance detection system[J]. Metrology and Measurement Systems, 2014, 21(3): 461-472. doi:10.2478/mms-2014-0039
    [26]
    梁万国, 罗森林, 周思永, 等. 光电探测器的设计[J]. 半导体光电,1998,19(1):52-56. doi:10.16818/j.issn1001-5868.1998.01.015

    LIANG W G, LUO S L, ZHOU S Y, et al. Design of photodetector[J]. Semiconductor Optoelectronics, 1998, 19(1): 52-56. (in Chinese). doi:10.16818/j.issn1001-5868.1998.01.015
    [27]
    NICODEMUS F E, RICHMOND J C, HSIA J J, et al. Geometrical considerations and nomenclature for reflectance[EB/OL]. (1977-01-01). https://www.nist.gov/publications/geometrical-considerations-and-nomenclature-reflectance.
    [28]
    张雷雷, 曹振松, 钟磬, 等. FPGA主控型数字锁相放大器设计及光谱测量[J]. 红外与 工程,2023,52(10):20230023.

    ZHANG L L, CAO Z S, ZHONG Q, et al. Digital lock-in amplifier controlled by FPGA for spectral measurement[J]. Infrared and Laser Engineering, 2023, 52(10): 20230023.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(49) PDF downloads(20) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map