Turn off MathJax
Article Contents
ZONG Si-guang, YANG Shao-peng, ZHANG Xin, PENG Dan, DUAN Zi-ke, CHEN Bao. Simulation and experiment of weak multi-target laser detection in complex hydrology[J]. Chinese Optics. doi: 10.37188/CO.2023-0141
Citation: ZONG Si-guang, YANG Shao-peng, ZHANG Xin, PENG Dan, DUAN Zi-ke, CHEN Bao. Simulation and experiment of weak multi-target laser detection in complex hydrology[J].Chinese Optics.doi:10.37188/CO.2023-0141

Simulation and experiment of weak multi-target laser detection in complex hydrology

doi:10.37188/CO.2023-0141
Funds:Supported by The National Defense Foundation of China (No. 2019-JCJQ-JJ-056)
More Information
  • Objective

    Investigating the impact of water quality, target characteristics, and target distance is crucial to assessing the effectiveness of laser detection for weak targets in complex coastal water bodies. This study examines the theoretical and practical significance of understanding these factors in underwater laser detection.

    Method

    In this study, we establish a laser detection model for detecting weak underwater targets. To verify the detection of weak multi-target laser ranging under different turbidity, we use Monte Carlo simulation. We simulate laser backscattering echo signals of small targets at different distances and analyze the backscattering echo characteristics of multiple targets with various reflection coefficients. Additionally, a smart and portable laser detection system for detecting weak underwater targets has been designed and developed. Laboratory and field lake environment tests were conducted to detect and range multi-target.

    Result

    In a near-shore lake with a turbidity of 12.87 NTU, the system can effectively detect 3−4 mixed small target groups. These groups have different low reflection coefficients and diameters varying from 80 to 400 μm, all within a range of 10 meters. The average measurement error is ±0.11 m, which is consistent with the theoretical simulation.

    Conclusion

    The research results serve as a guide for computing links, designing systems, and optimizing parameters for detecting multi-weak underwater targets using blue and green lasers. Furthermore, the results assist in the engineering practice of detecting underwater obstacles in offshore turbid waters.

  • loading
  • [1]
    LI G, LIANG K, WANG H. Measurement of water bulk viscosity based on brillouin scattering[C]. 中国兵工学会, 中国兵器科学研究院, 中国北方工业公司. 2018国际防务技术大会论文集(下卷). The Publishing House of Ordnance Industry, 2018: 6. (查阅网上资料, 未找到本条文献信息, 请确认).
    [2]
    WANG Y Q, ZHANG J H, ZHENG Y CH, et al. Brillouin scattering spectrum for liquid detection and applications in oceanography[J]. Opto-Electronic Advances, 2023, 6(1): 220016. doi:10.29026/oea.2023.220016
    [3]
    王翀, 杨嘉皓, 朱炳利, 等. 距离选通成像系统中短脉冲 驱动技术研究[J]. 中国光学(中英文),2023,16(3):567-577. doi:10.37188/CO.2022-0142

    WANG CH, YANG J H, ZHU B L, et al. Short pulse laser drive technology in a distance-selective imaging system[J]. Chinese Optics, 2023, 16(3): 567-577. (in Chinese). doi:10.37188/CO.2022-0142
    [4]
    宗思光, 张鑫, 梁善永, 等. 多尺度复杂水质尾流气泡的 探测仿真与实验[J]. 中国 ,2023,50(5):0504003. doi:10.3788/CJL220853

    ZONG S G, ZHANG X, LIANG SH Y, et al. Laser detection simulation and experiment of multiscale complex water wake bubble[J]. Chinese Journal of Lasers, 2023, 50(5): 0504003. (in Chinese). doi:10.3788/CJL220853
    [5]
    刘东, 姚清睿, 张思诺, 等. 拉曼 雷达大气温湿压探测技术研究进展[J]. 中国光学(中英文),2023,16(2):243-257. doi:10.37188/CO.2022-0145

    LIU D, YAO Q R, ZHANG S N, et al. Research progress of temperature, humidity and pressure detection technology using Raman Lidar[J]. Chinese Optics, 2023, 16(2): 243-257. (in Chinese). doi:10.37188/CO.2022-0145
    [6]
    江子琦, 刘晓梅, 蔡夫鸿, 等. 半导体白 作为水下成像系统光源与单色 、LED白光的对比成像实验(英文)[J]. 中国光学(中英文),2023,16(2):466-478. doi:10.37188/CO.EN.2022-0012

    JIANG Z Q, LIU X M, CAI F H, et al. Imaging comparison experiment of an underwater imaging system with a semiconductor white laser, a monochromatic laser and an LED white light as the light source[J]. Chinese Optics, 2023, 16(2): 466-478. doi:10.37188/CO.EN.2022-0012
    [7]
    彭波, 钟昆, 赵慧, 等. 水下目标 周向扫描探测模型与仿真分析[J]. 红外与 工程,2019,48(12):135-141.

    PENG B, ZHONG K, ZHAO H, et al. Laser circumferential scanning detection model and simulation analysis of underwater targets[J]. Infrared and Laser Engineering, 2019, 48(12): 135-141. (in Chinese).
    [8]
    郜魏柯, 杜小平, 王阳, 等. 散斑目标探测技术综述[J]. 中国光学,2020,13(6):1182-1193. doi:10.37188/CO.2020-0049

    GAO W K, DU X P, WANG Y, et al. Review of laser speckle target detection technology[J]. Chinese Optics, 2020, 13(6): 1182-1193. (in Chinese). doi:10.37188/CO.2020-0049
    [9]
    胡波, 张云菲, 吴超鹏, 等. 基于图像的水下三点 测距方法研究[J]. 红外与 工程,2019,48(10):1005011. doi:10.3788/IRLA201948.1005011

    HU B, ZHANG Y F, WU CH P, et al. Image-based three-beam underwater laser ranging method[J]. Infrared and Laser Engineering, 2019, 48(10): 1005011. (in Chinese). doi:10.3788/IRLA201948.1005011
    [10]
    刘欣宇, 杨苏辉, 廖英琦, 等. 基于小波变换的 水下测距[J]. 物理学报,2021,70(18):184205. doi:10.7498/aps.70.20210569

    LIU X Y, YANG S H, LIAO Y Q, et al. Laser underwater ranging based on wavelet transform[J]. Acta Physica Sinica, 2021, 70(18): 184205. (in Chinese). doi:10.7498/aps.70.20210569
    [11]
    李坤, 杨苏辉, 廖英琦, 等. 强度调制532 nm 水下测距[J]. 物理学报,2021,70(8):084203. doi:10.7498/aps.70.20201612

    LI K, YANG S H, LIAO Y Q, et al. Underwater ranging with intensity modulated 532 nm laser source[J]. Acta Physica Sinica, 2021, 70(8): 084203. (in Chinese). doi:10.7498/aps.70.20201612
    [12]
    申玲菲, 范婷威, 胡谷雨, 等. 基于蒙特卡洛仿真的水下四点单目测距研究[J]. 光通信研究,2023(4):60-67.

    SHEN L F, FAN T W, HU G Y, et al. Research on underwater four-point monocular ranging based on Monte Carlo simulation[J]. Study on Optical Communications, 2023(4): 60-67. (in Chinese).
    [13]
    张鑫, 宗思光, 余扬, 等. 近岸渔网 探测特性与实验研究[J]. 杂志,2023,44(3):105-110. doi:10.14016/j.cnki.jgzz.2023.03.105

    ZHANG X, ZONG S G, YU Y, et al. Laser detection characteristics and experimental study of inshore fishing net[J]. Laser Journal, 2023, 44(3): 105-110. (in Chinese). doi:10.14016/j.cnki.jgzz.2023.03.105
    [14]
    孔琪. 相位式 测距技术研究与实现[D]. 成都: 四川师范大学, 2018.

    KONG Q. Research and implementation of phase laser ranging technology[D]. Chengdu: Sichuan Normal University, 2018. (in Chinese).
    [15]
    宗思光, 张鑫, 曹静, 等. 舰船尾流 探测跟踪方法与试验[J]. 红外与 工程,2023,52(3):20220507. doi:10.3788/IRLA20220507

    ZONG S G, ZHANG X, CAO J, et al. Method and experiment of laser detection and tracking of ship wake[J]. Infrared and Laser Engineering, 2023, 52(3): 20220507. (in Chinese). doi:10.3788/IRLA20220507
    [16]
    钟昆, 苏伟, 彭波, 等. 水下脉冲 探测后向散射噪声自适应滤波算法[J]. 太赫兹科学与电子信息学报,2023,21(2):208-215,224. doi:10.11805/TKYDA2020461

    ZHONG K, SU W, PENG B, et al. An adaptive filter algorithm of underwater pulse laser detection based on backscattering correlative characters[J]. Journal of Terahertz Science and Electronic Information Technology, 2023, 21(2): 208-215,224. (in Chinese). doi:10.11805/TKYDA2020461
    [17]
    刘心溥, 元志安, 王玲, 等. 副载波调制水下 雷达测距性能仿真[J]. 红外与 工程,2020,49(S2):20200193.

    LIU X F, YUAN ZH A, WANG L, et al. Performance simulation of underwater lidar ranging system based on subcarrier modulation technology[J]. Infrared and Laser Engineering, 2020, 49(S2): 20200193. (in Chinese)
    [18]
    张鑫, 宗思光, 余扬, 等. 水下微弱目标双通道 探测方法研究[J]. 与红外,2023,53(2):185-193. doi:10.3969/j.issn.1001-5078.2023.02.004

    ZHANG X, ZONG S G, YU Y, et al. Research on dual-channel laser detection method for underwater weak target[J]. Laser & Infrared, 2023, 53(2): 185-193. (in Chinese). doi:10.3969/j.issn.1001-5078.2023.02.004
    [19]
    邢刚, 许冬生, 夏云. 基于CPLD的多目标脉冲 测距系统的设计与实现[J]. 与红外,2010,40(2):152-154. doi:10.3969/j.issn.1001-5078.2010.02.009

    XING G, XU D SH, XIA Y. Design and realization of multi-target pulsed laser range finder on CPLD[J]. Laser & Infrared, 2010, 40(2): 152-154. (in Chinese). doi:10.3969/j.issn.1001-5078.2010.02.009
    [20]
    魏昊, 姜建芳, 施峰, 等. FPGA的多目标 测距系统的设计与实现[J]. 火力与指挥控制,2007,32(7):120-122,125. doi:10.3969/j.issn.1002-0640.2007.07.034

    WEI H, JIANG J F, SHI F, et al. The design and realization of multi-target laser range finder on FPGA[J]. Fire Control and Command Control, 2007, 32(7): 120-122,125. (in Chinese). doi:10.3969/j.issn.1002-0640.2007.07.034
    [21]
    董驰, 赵宇, 张翀, 等. 基于FPGA的相位式 测距系统[J]. 国外电子测量技术,2021,40(8):36-40. doi:10.19652/j.cnki.femt.2002701

    DONG CH, ZHAO Y, ZHANG CH, et al. Phase laser ranging system based on FPGA[J]. Foreign Electronic Measurement Technology, 2021, 40(8): 36-40. (in Chinese). doi:10.19652/j.cnki.femt.2002701
    [22]
    纪荣祎, 赵长明, 任学成, 等. 脉冲 测距高精度计时系统的设计[J]. 工矿自动化,2010,36(8):18-22.

    JI R Y, ZHAO CH M, REN X CH, et al. Design of timing system with high precision of pulse laser ranging[J]. Industry and Mine Automation, 2010, 36(8): 18-22. (in Chinese).
    [23]
    谭亚运. 水下脉冲 近程周向扫描探测技术研究[D]. 南京: 南京理工大学, 2017.

    TAN Y Y. Research on underwater laser proximity circumferential scanning detection technology[D]. Nanjing: Nanjing University of Science & Technology, 2017. (in Chinese).
    [24]
    李铜基, 林明森, 何贤强, 等. 中国近海海洋——海洋光学特性与遥感[M]. 北京: 海洋出版社, 2012.

    LI T J, LIN M S, HE X Q, et al. Offshore China - Marine Optical Properties and Remote Sensing[M]. Beijing: China Ocean Press, 2012. (in Chinese) (查阅网上资料, 未找到对应的英文翻译, 请确认).
    [25]
    胡江华, 贾其, 李凌, 等. 伪装技术[M]. 2版. 北京: 兵器工业出版社, 2022.

    HU J H, JIA Q, LI L, et al. Camouflage Technology[M]. 2nd ed. Beijing: Weapon Industry Press, 2022. (in Chinese) (查阅网上资料, 未找到对应的英文翻译, 请确认).
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)/Tables(7)

    Article views(23) PDF downloads(5) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map