Turn off MathJax
Article Contents
BAO Ming-di, SHI Guo-hua, XING Li-na, HE Yi. A study of high-precision spherical wave calibration method for shack-hartmann wavefront sensor[J]. Chinese Optics. doi: 10.37188/CO.2023-0148
Citation: BAO Ming-di, SHI Guo-hua, XING Li-na, HE Yi. A study of high-precision spherical wave calibration method for shack-hartmann wavefront sensor[J].Chinese Optics.doi:10.37188/CO.2023-0148

A study of high-precision spherical wave calibration method for shack-hartmann wavefront sensor

doi:10.37188/CO.2023-0148
Funds:Supported by the National Natural Science Foundation of China (No. 62075235); the National Key Research and Development Program of China (No. 2021YFF0700700); Youth Innovation Promotion Association (No.2019320); the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA16021304)
More Information
  • To address the issues of inaccurate measurements and unstable calibration processes in conventional Shack-Hartmann wavefront sensors (SHWFS), we propose a high-precision absolute calibration method using spherical waves generated by the sensor. The SHWFS experiences an extremely precise calibration process with 128×128 sub-apertures. This is achieved using a method of spherical wave obtained through theoretical derivation in conjunction with the constructed experimental device for spherical wave calibration. The structural parameters of the SHWFS ( f , w , and L 0) are calculated precisely. Also, the measurement accuracy of the SHWFS is verified following calibration. The experimental results demonstrate that by using this method to calibrate the Shack-Hartmann wavefront sensor, its wavefront recovery accuracy reaches a PV of 1.376×10−2λ and an RMS of 4×10−3λ (where λ=625 nm), respectively. Additionally, its repeatability accuracy reaches a PV of 3.2×10−3λ and an RMS of 9.76×10−4λ (where λ=625 nm), respectively. These findings suggest that this method is suitable for enhancing the measurement accuracy of high-precision calibration of SHWFS with large aperture.

  • loading
  • [1]
    TYSON R K, FRAZIER B W. Principles of Adaptive Optics[M]. 5th ed. Boca Raton: CRC Press, 2022.
    [2]
    WEI K, LI M, CHEN SH Q, et al. First light for the sodium laser guide star adaptive optics system on the Lijiang 1.8m telescope[J]. Research in Astronomy and Astrophysics, 2016, 16(12): 183. doi:10.1088/1674-4527/16/12/183
    [3]
    SCHÄFER B, LÜBBECKE M, MANN K. Hartmann-Shack wave front measurements for real time determination of laser beam propagation parameters[J]. Review of Scientific Instruments, 2006, 77(5): 053103. doi:10.1063/1.2198795
    [4]
    SAKHAROV A M, BARYSHNIKOV N V, KARASIK V E, et al. A method for reconstructing the equation of the aspherical surface of mirrors in an explicit form using a device with a wavefront sensor[J]. Proceedings of SPIE, 2020, 11487: 114870B.
    [5]
    HE Y, DENG G H, WEI L, et al. Design of a compact, bimorph deformable mirror-based adaptive optics scanning laser ophthalmoscope[M]//LUO Q M, LI L Z, HARRISON D K, et al. Oxygen Transport to Tissue XXXVIII. Cham: Springer, 2016: 375-383.
    [6]
    朱沁雨, 韩国庆, 彭建涛, 等. 双波长视网膜成像自适应光学系统的轴向色差补偿方法[J]. 中国光学,2022,15(1):79-89. doi:10.37188/CO.EN.2021-0009

    ZHU Q Y, HAN G Q, PENG J T, et al. Longitudinal chromatic aberration compensation method for dual-wavelength retinal imaging adaptive optics systems[J]. Chinese Optics, 2022, 15(1): 79-89. (in Chinese). doi:10.37188/CO.EN.2021-0009
    [7]
    王艳萍, 王茜蒨, 马冲. 哈特曼波前分析仪校准方法研究[J]. 中国 ,2015,42(1):0108003. doi:10.3788/CJL201542.0108003

    WANG Y P, WANG Q Q, MA CH. Study on Hartmann wavefront analyzer calibration method[J]. Chinese Journal of Lasers, 2015, 42(1): 0108003. (in Chinese). doi:10.3788/CJL201542.0108003
    [8]
    ARTZNER G. On the absolute calibration of Shack-Hartmann sensors and UV laboratory wavefront measurements[J]. Pure and Applied Optics:Journal of the European Optical Society Part A, 1994, 3(2): 121-132. doi:10.1088/0963-9659/3/2/005
    [9]
    GREIVENKAMP J E, SMITH D G, GOODWIN E. Calibration issues with Shack-Hartmann sensors for metrology applications[J]. Proceedings of SPIE, 2004, 5252: 372-380. doi:10.1117/12.513462
    [10]
    CHERNYSHOV A, STERR U, RIEHLE F, et al. Calibration of a Shack–Hartmann sensor for absolute measurements of wavefronts[J]. Applied Optics, 2005, 44(30): 6419-6425. doi:10.1364/AO.44.006419
    [11]
    NIKITIN A N, GALAKTIONOV I, SHELDAKOVA J, et al. Absolute calibration of a Shack-Hartmann wavefront sensor for measurements of wavefronts[J]. Proceedings of SPIE, 2019, 10925: 109250K.
    [12]
    BAUTSCH J, SCHAKE M, EHRET G, et al. Traceable calibration of Shack–Hartmann wavefront sensors employing spherical wavefronts[J]. Optical Engineering, 2020, 59(8): 084104.
    [13]
    YANG J SH, WEI L, CHEN H L, et al. Absolute calibration of Hartmann-Shack wavefront sensor by spherical wavefronts[J]. Optics Communications, 2010, 283(6): 910-916. doi:10.1016/j.optcom.2009.11.022
    [14]
    梁春, 沈建新, 童桂, 等. Hartmann-Shack传感器结构参量的自基准标定[J]. 光子学报,2009,38(4):780-784.

    LIANG CH, SHEN J X, TONG G, et al. A self-reference method for measuring Hartmann-shack wavefront sensor parameter[J]. Acta Photonica Sinica, 2009, 38(4): 780-784. (in Chinese).
    [15]
    周晓斌, 栾亚东, 史雷蕾, 等. 基于已知球面波前的Hartmann-Shack传感器结构参量标定[J]. 应用光学,2015,36(6):909-912. doi:10.5768/JAO201536.0603002

    ZHOU X B, LUAN Y D, SHI L L, et al. Structural parameters calibration of Hartmann-Shack sensor based on known spherical wavefront[J]. Journal of Applied Optics, 2015, 36(6): 909-912. (in Chinese). doi:10.5768/JAO201536.0603002
    [16]
    NIKITIN A N, GALAKTIONOV I, SHELDAKOVA J, et al. Calibration of a Shack-Hartmann wavefront sensor using spherical wavefronts from a point source[J]. Proceedings of SPIE, 2022, 11987: 119870J.
    [17]
    PLATT B C, SHACK R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577.
    [18]
    BORN M, WOLF E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 7th ed. Cambridge: Cambridge University Press, 1999. (查阅网上资料, 未找到本条文献2013年版本信息, 请确认).

    BORN M, WOLF E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 7th ed. Cambridge: Cambridge University Press, 1999. (查阅网上资料, 未找到本条文献2013年版本信息, 请确认).
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)/Tables(2)

    Article views(46) PDF downloads(10) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map