Turn off MathJax
Article Contents
KONG Xiang-jin, LI Bo, LI Han-shuang, WANG Xiao-xu, GU Guo-chao, JIANG Xue. Optical system design of hyperspectral imaging spectrometer for trace gas occultation detection[J]. Chinese Optics. doi: 10.37188/CO.2023-0153
Citation: KONG Xiang-jin, LI Bo, LI Han-shuang, WANG Xiao-xu, GU Guo-chao, JIANG Xue. Optical system design of hyperspectral imaging spectrometer for trace gas occultation detection[J].Chinese Optics.doi:10.37188/CO.2023-0153

Optical system design of hyperspectral imaging spectrometer for trace gas occultation detection

doi:10.37188/CO.2023-0153
Funds:High precision imaging spectroscopy for Earth-moon large dynamic range(No.2022YFB3903202); National Natural Science Foundation of China (No. 62205330)
More Information
  • Corresponding author:libo0008429@163.com
  • Received Date:30 Aug 2023
  • Accepted Date:31 Oct 2023
  • Available Online:08 Nov 2023
  • Trace gases, as important constituents of the atmosphere, play an important role in the ecology of the planet. In order to realize the requirements of all-weather continuous measurement, wide-band and hyperspectral detection, a hyperspectral imaging spectrometer operating in occultation detection mode is designed in this paper. The system is a dual-channel structure with a common slit, the UV-visible channel adopts a single concave grating, and the infrared channel adopts a structure combining Littrow and immersion grating, which effectively reduces the volume. The software was used to optimize the optical structure, and the optimization results showed that the spectrometer operated in the range of 250-952 nm wavelengths, of which the UV-visible channel operated in the wavelength range of 250-675 nm, the spectral resolution was better than 1 nm, the MTFs were all higher than 0.58 at a Nyquist frequency of 20 lp/mm, and the RMS values at various wavelengths of the full-field-of-view were all less than 21 μm; The infrared channel operates in the wavelength band of 756-952 nm, the spectral resolution is better than 0.2 nm, the MTF is higher than 0.76 at the Nyquist frequency of 20 lp/mm, and the RMS value at each wavelength in the whole field of view is less than 6 μm , all of them meet the design requirements, and this hyperspectral imaging spectrometer system can realize occultation detection of trace gases . It can be seen that the hyperspectral imaging spectrometer system can realize the occultation detection of trace gases.

  • loading
  • [1]
    YE X, YI X L, LIN CH, et al. Instrument development: Chinese radiometric benchmark of reflected solar band based on space cryogenic absolute radiometer[J]. Remote Sensing, 2020, 12(17): 2856. doi:10.3390/rs12172856
    [2]
    刘明言, 石秀顶, 李天国, 等. 电化学分析方法检测重金属离子研究进展[J]. 应用化学,2023,40(4):463-475.

    LIU M Y, SHI X D, LI T G, et al. Research progress in detection of heavy metal ions by electrochemical analysis[J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 463-475. (in Chinese).
    [3]
    THUILLIER G, ZHU P, SNOW M, et al. Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach[J]. Light:Science & Applications, 2022, 11(1): 79.
    [4]
    朱嘉诚, 陆伟奇, 赵知诚, 等. 静止轨道中波红外成像光谱仪分光成像系统[J]. 光学学报,2021,41(11):1122001. doi:10.3788/AOS202141.1122001

    ZHU J CH, LU W Q, ZHAO Z CH, et al. Spectroscopic imaging system in mid-wave infrared imaging spectrometer on geostationary orbit[J]. Acta Optica Sinica, 2021, 41(11): 1122001. (in Chinese). doi:10.3788/AOS202141.1122001
    [5]
    FENG A W, ZHAO SH J, HAN J ZH, et al. High spectral resolution compact Offner spectrometer based on the aberration-reduced convex holographic gratings recorded by spherical waves under Rowland circle mounting[J]. Applied Optics, 2022, 61(13): 3893-3900. doi:10.1364/AO.458391
    [6]
    谭奋利, 曾晨欣, 冯安伟, 等. 基于Dyson结构的新型快照式分光成像系统光学设计[J]. 光学学报,2022,42(4):0422002. doi:10.3788/AOS202242.0422002

    TAN F L, ZENG CH X, FENG A W, et al. Optical design of novel snapshot spectral imaging system based on Dyson structure[J]. Acta Optica Sinica, 2022, 42(4): 0422002. (in Chinese). doi:10.3788/AOS202242.0422002
    [7]
    DILS B, BUCHWITZ M, REUTER M, et al. The greenhouse gas climate change initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO 2and CH 4retrieval algorithm products with measurements from the TCCON[J]. Atmospheric Measurement Techniques, 2014, 7(6): 1723-1744. doi:10.5194/amt-7-1723-2014
    [8]
    REMUND Q P, NEWELL D, RODRIGUEZ J V, et al. The Ozone Mapping and Profiler Suite (OMPS): on-orbit calibration design[J]. Proceedings of SPIE, 2004, 5652: 165-173. doi:10.1117/12.579016
    [9]
    SOUCY M A A, CHATEAUNEUF F, Deutsch C, et al. ACE-FTS instrument detailed design[J]. Proceedings of SPIE, 2002, 4814: 70-81. doi:10.1117/12.451701
    [10]
    钟美, 皮波, 佘勇, 等. FY-3B TOU与Aura OMI卫星臭氧总量产品的比对分析[J]. 气象研究与应用,2021,42(2):29-34.

    ZHONG M, PI B, SHE Y, et al. Comparative analysis of total ozone products between FY -3B TOU and Aura OMI satellite[J]. Journal of Meteorological Research and Application, 2021, 42(2): 29-34. (in Chinese).
    [11]
    邵春沅, 顾明剑, 漆成莉, 等. 风云三号D星红外高光谱大气探测仪零光程差检测[J]. 光学 精密工程,2020,28(12):2573-2580. doi:10.37188/OPE.20202812.2573

    SHAO CH Y, GU M J, QI CH L, et al. Detection of zero path difference position for FY-3D hyper-spectral in frared atmospheric sounder[J]. Optics and Precision Engineering, 2020, 28(12): 2573-2580. (in Chinese). doi:10.37188/OPE.20202812.2573
    [12]
    曹西凤, 李小英, 罗琪, 等. 星载红外高光谱传感器温度廓线反演综述[J]. 遥感学报,2021,25(2):577-598. doi:10.11834/jrs.20210009

    CAO X F, LI X Y, LUO Q, et al. Review of temperature profile inversion of satellite-borne infrared hyperspectral sensors[J]. National Remote Sensing Bulletin, 2021, 25(2): 577-598. (in Chinese). doi:10.11834/jrs.20210009
    [13]
    张璐, 李博, 李寒霜, 等. 超光谱分辨率紫外双通道共光路成像光谱仪设计[J]. 中国光学,2022,15(5):1029-1037.

    ZHANG L, LI B, LI H SH, et al. Hyperspectral resolution ultraviolet dual channel common optical path imaging spectrometer[J]. Chinese Optics, 2022, 15(5): 1029-1037. (in Chinese).
    [14]
    李寒霜, 李博, 李昊晨, 等. 基于一种透镜材料的宽谱段紫外成像仪光学设计[J]. 中国光学,2022,15(1):65-71.

    LI H SH, LI B, LI H CH, et al. Optical design of a wide-spectrum ultraviolet imager based on a single material[J]. Chinese Optics, 2022, 15(1): 65-71. (in Chinese).
    [15]
    SZUMSKI R, WALKER D D. The immersed echelle-I. Basic properties[J]. Monthly Notices of the Royal Astronomical Society, 1999, 302(1): 139-144. doi:10.1046/j.1365-8711.1999.02107.x
    [16]
    CU-NGUYEN P H, GREWE A, FEßER P, et al. An imaging spectrometer employing tunable hyperchromatic microlenses[J]. Light:Science & Applications, 2016, 5(4): e16058.
    [17]
    韦飞, 张轩谊, 彭松武, 等. 临近空间太阳远紫外-紫外光谱仪设计[J]. 光子学报,2021,50(12):1222002. doi:10.3788/gzxb20215012.1222002

    WEI F, ZHANG X Y, PENG S W, et al. Solar FUV/UV spectrometer onboard high altitude balloon flight in the near space[J]. Acta Photonica Sinica, 2021, 50(12): 1222002. (in Chinese). doi:10.3788/gzxb20215012.1222002
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)/Tables(1)

    Article views(38) PDF downloads(11) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map