Citation: | ZHANG Jiong-yang, ZHAI Hao, WANG Ji, XIAO Yu-hua, DAI Hu, LIAN Ji-qing, YANG Shi-yu, CHEN Jiang, LIU Zhi-dong. Rubidium atomic optical frequency standard based on two-photon transition[J]. Chinese Optics. doi: 10.37188/CO.2024-0120 |
Precise timing plays a vital roel in national economic development, scientific and technological progress, national defense and military security. The optical frequency standard based on two-photon transition is expected to become a practical miniaturized optical frequency standard due to its significant advantages such as high stability, good reproducibility and easy miniaturization. In this paper, the basic principle of two-photon transition is briefly described, and the research status and progress of rubidium atomic optical frequency standards based on two-photon transition at home and abroad are introduced. Finally, it is concluded that the future development trends of rubidium atomic optical frequency standards based on two-photon transition is system miniaturization, performance improvement, integrated application and engineering.
[1] |
BOTHWELL T, KENNEDY C J, AEPPLI A, et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 2022, 602(7897): 420-424. doi: 10.1038/s41586-021-04349-7
|
[2] |
ASHBY N, HEAVNER T P, JEFFERTS S R, et al. Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers[J]. Physical Review Letters, 2007, 98(7): 070802. doi: 10.1103/PhysRevLett.98.070802
|
[3] |
孙和平, 杨元喜, 叶朝辉, 等. 精密(量子)测量时代下时空基准研究中的关键科学问题和核心技术[J]. 中国科学基金,2024,38(1):172-181.
SUN H P, YANG Y X, YE ZH H, et al. Key scientific frontiers and core technologies in space-time reference research in the era of precision (quantum) measurement[J]. Bulletin of National Natural Science Foundation of China, 2024, 38(1): 172-181. (in Chinese).
|
[4] |
杨元喜, 任夏, 贾小林, 等. 以北斗系统为核心的国家安全PNT体系发展趋势[J]. 中国科学: 地球科学,2023,66(5):929-938.
YANG Y X, REN X, JIA X L, et al. Development trends of the national secure PNT system based on BDS[J]. Science China Earth Sciences, 2023, 66(5): 929-938.
|
[5] |
罗俊, 艾凌皓, 艾艳丽, 等. 天琴计划简介[J]. 中山大学学报(自然科学版),2021,60(1-2):1-19.
LUO J, AI L H, AI Y L, et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1-2): 1-19. (in Chinese).
|
[6] |
谢军, 郑晋军, 张弓, 等. 卫星导航系统发展现状与未来趋势[J]. 前瞻科技,2022,1(1):94-111. doi: 10.3981/j.issn.2097-0781.2022.01.009
XIE J, ZHENG J J, ZHANG G, et al. Development status and future trend of satellite navigation systems[J]. Science and Technology Foresight, 2022, 1(1): 94-111. (in Chinese). doi: 10.3981/j.issn.2097-0781.2022.01.009
|
[7] |
翟浩, 廉吉庆. 原子钟性能对卫星导航系统定位精度的影响分析[J]. 导航定位与授时,2021,8(5):118-123.
ZHAI H, LIAN J Q. Analysis of the influence of atomic clock performance on positioning accuracy of satellite navigation systems[J]. Navigation Positioning and Timing, 2021, 8(5): 118-123. (in Chinese).
|
[8] |
曹远洪, 杜润昌, 赵杏文, 等. 原子钟技术在电力系统应用——中国电力系统时间同步体系建设方案初探[C]. 第十二届中国卫星导航年会论文集——S05空间基准与精密定位, 中国卫星导航系统管理办公室学术交流中心, 2021: 8.
CAO Y H, DU R CH, ZHAO X W, et al. Application of atomic clock technology in grid system —preliminary study on construction of time synchronization system in China grid[C]. The 12th China Satellite Navigation Annual Conference, China Satellite Navigation Office Academic Exchange Center, 2021: 8. (in Chinese) (查阅网上资料, 未找到标黄信息, 请确认) .
|
[9] |
王勇征, 田映东, 彭刚, 等. 铯原子钟在通信网中的应用研究[J]. 数码设计,2021,10(1):59.
WANG Y ZH, TIAN Y D, PENG G, et al. Research on the application of cesium atomic clock in communication network[J]. Digital Insige, 2021, 10(1): 59. (in Chinese) (查阅网上资料, 未找到标黄信息, 请确认) .
|
[10] |
SCHULDT T, DÖRINGSHOFF K, OSWALD M, et al. Absolute laser frequency stabilization for LISA[J]. International Journal of Modern Physics D, 2019, 28(12): 1845002. doi: 10.1142/S0218271818450025
|
[11] |
CUI J Q, MING G, WANG F, et al. Realization of a rubidium atomic frequency standard with short-term stability in 10−14 τ−1/2 level[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1500507.
|
[12] |
崔敬忠, 杨坦, 张玲, 等. 真空环境下铷钟性能的研究[J]. 真空与低温,2016,22(5):271-274,295. doi: 10.3969/j.issn.1006-7086.2016.05.005
CUI J ZH, YANG T, ZHANG L, et al. Study of the performance of rubidium frquency standard in vacuum environment[J]. Vacuum and Cryogenics, 2016, 22(5): 271-274,295. (in Chinese). doi: 10.3969/j.issn.1006-7086.2016.05.005
|
[13] |
JEANMAIRE A, ROCHAT P, EMMA F. Rubidium atomic clock for Galileo[C]. Proceedings of the 31th Annual Precise Time and Time Interval Systems and Applications Meeting, 1999: 627-636. (查阅网上资料, 未找到出版社信息, 请补充) .
|
[14] |
陈江, 刘志栋, 王骥, 等. 一种超小型磁选态铯原子钟[J]. 时间频率学报,2022,45(1):9-14.
CHEN J, LIU ZH D, WANG J, et al. Small compact magnetically state-selected cesium atomic clock[J]. Journal of Time and Frequency, 2022, 45(1): 9-14. (in Chinese).
|
[15] |
赵杏文, 韦强, 李东旭, 等. 金宝搏188软件怎么用
抽运小型铯原子钟研制进展[J]. 时间频率学报,2022,45(1):1-8.
ZHAO X W, WEI Q, LI D X, et al. Progress on optically pumped cesium beam frequency standard[J]. Journal of Time and Frequency, 2022, 45(1): 1-8. (in Chinese).
|
[16] |
CHADSEY H, KUBIK A. Maintenance of HP 5071A primary frequency standards at USNO[C]. Proceedings of Precise Time Time Interval Syst. Appl. Meeting, 1997: 49-59. (查阅网上资料, 未能确认标黄信息, 未找到出版社信息, 请核对并补充) .
|
[17] |
王骥, 黄良育, 陈江, 等. 磁选态铯原子频率标准技术研制进展[J]. 时间频率学报,2022,45(1):15-25.
WANG J, HUANG L Y, CHEN J, et al. Progress on cesium atomic frequency standard with magnetic state-selection technology[J]. Journal of Time and Frequency, 2022, 45(1): 15-25. (in Chinese).
|
[18] |
何克亮, 张为群, 林传富. 主动型氢原子钟的研究进展[J]. 天文学进展,2017,35(3):345-366. doi: 10.3969/j.issn.1000-8349.2017.03.05
HE K L, ZHANG W Q, LIN CH F. Progresses in researches of active hydrogen atomic clock[J]. Progress in Astronomy, 2017, 35(3): 345-366. (in Chinese). doi: 10.3969/j.issn.1000-8349.2017.03.05
|
[19] |
POLYAKOV V, TIMOFEEV Y, DEMIDOV N. Frequency stability improvement of an active hydrogen maser with a single-state selection system[C]. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, IEEE, 2021: 1-4.
|
[20] |
郑贺斐, 李晶, 冯克明, 等. 被动型氢原子钟单频调制的鉴频特性研究[J]. 中国金宝搏188软件怎么用
,2018,45(3):0311001. doi: 10.3788/CJL201845.0311001
ZHENG H F, LI J, FENG K M, et al. Frequency discrimination for passive hydrogen maser based on single frequency modulation[J]. Chinese Journal of Lasers, 2018, 45(3): 0311001. (in Chinese). doi: 10.3788/CJL201845.0311001
|
[21] |
WEYERS S, GERGINOV V, KAZDA M, et al. Advances in the accuracy, stability, and reliability of the PTB primary fountain clocks[J]. Metrologia, 2018, 55(6): 789-805. doi: 10.1088/1681-7575/aae008
|
[22] |
GUENA J, ABGRALL M, ROVERA D, et al. Progress in atomic fountains at LNE-SYRTE[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(3): 391-410. doi: 10.1109/TUFFC.2012.2208
|
[23] |
PELLE B, ARCHAMBAULT L, DESRUELLE B, et al. Cold-atom-based commercial microwave clocks at 1× 10−15 relative instability over more than one month[C]. 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, IEEE, 2022: 1-4.
|
[24] |
陈伟亮, 刘昆, 郑发松, 等. 长期稳定度2.6×10−16的工程化高可靠铷原子喷泉钟[J]. 仪器仪表学报,2024,45(2):79-86.
CHEN W L, LIU K, ZHENG F S, et al. Enineering highly reliable Rb fountain clock with a long-term instability of 2.6×10−16[J]. Chinese Journal of Scientific Instrument, 2024, 45(2): 79-86. (in Chinese).
|
[25] |
李慧, 杜远博, 刘洪力, 等. 用于本地时标系统的铯原子喷泉钟研制[J]. 华中科技大学学报(自然科学版),2022,50(9):23-29.
LI H, DU Y B, LIU H L, et al. Development of cesium fountain clock as local precision time and frequency standard[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2022, 50(9): 23-29. (in Chinese).
|
[26] |
LIU L, LU D SH, CHEN W B, et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms[J]. Nature Communications, 2018, 9(1): 2760. doi: 10.1038/s41467-018-05219-z
|
[27] |
REN W, LI T, QU Q ZH, et al. Development of a space cold atom clock[J]. National Science Review, 2020, 7(12): 1828-1836. doi: 10.1093/nsr/nwaa215
|
[28] |
LIU P, MENG Y L, WAN J Y, et al. Scheme for a compact cold-atom clock based on diffuse laser cooling in a cylindrical cavity[J]. Physical Review A, 2015, 92(6): 062101. doi: 10.1103/PhysRevA.92.062101
|
[29] |
MENG Y L, JIANG X J, WU J, et al. Satellite-borne atomic clock based on diffuse laser-cooled atoms[J]. Frontiers in Physics, 2022, 10: 985586. doi: 10.3389/fphy.2022.985586
|
[30] |
ESNAULT F X, ROSSETTO N, HOLLEVILLE D, et al. HORACE: a compact cold atom clock for Galileo[J]. Advances in Space Research, 2011, 47(5): 854-858. doi: 10.1016/j.asr.2010.12.012
|
[31] |
BURT E A, PRESTAGE J D, TJOELKER R L, et al. Demonstration of a trapped-ion atomic clock in space[J]. Nature, 2021, 595(7865): 43-47. doi: 10.1038/s41586-021-03571-7
|
[32] |
曹士英, 房芳. 秒定义变革及我国时间频率基准的发展和应对[J]. 信息通信技术与政策,2022,48(7):2-8. doi: 10.12267/j.issn.2096-5931.2022.07.001
CAO SH Y, FANG F. Redefinition of unit of time and research progress of primary frequency standard in NIM[J]. Information and Communications Technology and Policy, 2022, 48(7): 2-8. (in Chinese). doi: 10.12267/j.issn.2096-5931.2022.07.001
|
[33] |
BOTHWELL T, KEDAR D, OELKER E, et al. JILA SrI optical lattice clock with uncertainty of 2.0×10−18[J]. Metrologia, 2019, 56(6): 065004. doi: 10.1088/1681-7575/ab4089
|
[34] |
MCGREW W F, ZHANG X, FASANO R J, et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 2018, 564(7734): 87-90. doi: 10.1038/s41586-018-0738-2
|
[35] |
LI J, CUI X Y, JIA ZH P, et al. A strontium lattice clock with both stability and uncertainty below 5×10−18[J]. Metrologia, 2024, 61(1): 015006. doi: 10.1088/1681-7575/ad1a4c
|
[36] |
BREWER S M, CHEN J S, HANKIN A M, et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18[J]. Physical Review Letters, 2019, 123(3): 033201. doi: 10.1103/PhysRevLett.123.033201
|
[37] |
DIDDAMS S A, JONES D J, YE J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Physical Review Letters, 2000, 84(22): 5102-5105. doi: 10.1103/PhysRevLett.84.5102
|
[38] |
DEL’HAYE P, SCHLIESSER A, ARCIZET O, et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 2007, 450(7173): 1214-1217. doi: 10.1038/nature06401
|
[39] |
GIORGI G, SCHMIDT T D, TRAINOTTI C, et al. Advanced technologies for satellite navigation and geodesy[J]. Advances in Space Research, 2019, 64(6): 1256-1273. doi: 10.1016/j.asr.2019.06.010
|
[40] |
POLI N, SCHIOPPO M, VOGT S, et al. A transportable strontium optical lattice clock[J]. Applied Physics B, 2014, 117(4): 1107-1116. doi: 10.1007/s00340-014-5932-9
|
[41] |
KONG D H, WANG ZH H, GUO F, et al. A transportable optical lattice clock at the national time service center[J]. Chinese Physics B, 2020, 29(7): 070602. doi: 10.1088/1674-1056/ab9290
|
[42] |
ZHANG H Q, HUANG Y, ZHANG B L, et al. Absolute frequency measurements with a robust, transportable 40Ca+ optical clock[J]. Metrologia, 2023, 60(3): 035004. doi: 10.1088/1681-7575/acd05d
|
[43] |
任洁, 谭巍, 郭峰, 等. 空间锶原子光钟磁场分析及主动补偿系统[J]. 光学 精密工程,2022,30(11):1337-1343. doi: 10.37188/OPE.20223011.1337
REN J, TAN W, GUO F, et al. Magnetic field analysis and active compensation system for strontium optical lattice clock in space[J]. Optics and Precision Engineering, 2022, 30(11): 1337-1343. (in Chinese). doi: 10.37188/OPE.20223011.1337
|
[44] |
DÖRINGSHOFF K, GUTSCH F B, SCHKOLNIK V, et al. Iodine frequency reference on a sounding rocket[J]. Physical Review Applied, 2019, 11(5): 054068. doi: 10.1103/PhysRevApplied.11.054068
|
[45] |
ZHANG ZH Q, WANG ZH Y, LIU H L, et al. An ultra-stable laser based on molecular iodine with a short-term instability of 3.3×10−15 for space based gravity missions[J]. Classical and Quantum Gravity, 2023, 40(22): 225001. doi: 10.1088/1361-6382/acfec2
|
[46] |
ZANG E J, CAO J P, LI Y, et al. Realization of four-pass I2 absorption cell in 532-nm optical frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 673-676. doi: 10.1109/TIM.2007.890816
|
[47] |
DÖRINGSHOFF K, SCHULDT T, KOVALCHUK E V, et al. A flight-like absolute optical frequency reference based on iodine for laser systems at 1064 nm[J]. Applied Physics B, 2017, 123(6): 183. doi: 10.1007/s00340-017-6756-1
|
[48] |
LEE S, MOON G, PARK S E, et al. Laser frequency stabilization in the 10−14 range via optimized modulation transfer spectroscopy on the 87 Rb D2 line[J]. Optics Letters, 2023, 48(4): 1020-1023. doi: 10.1364/OL.480178
|
[49] |
ZHANG SH N, ZHANG X G, CUI J ZH, et al. Compact Rb optical frequency standard with 10−15 stability[J]. Review of Scientific Instruments, 2017, 88(10): 103106. doi: 10.1063/1.5006962
|
[50] |
QI X H, CHEN W L, LIN Y, et al. Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique[J]. Chinese Physics Letters, 2009, 26(4): 044205. doi: 10.1088/0256-307X/26/4/044205
|
[51] |
KERSTEN P, MENSING F, STERR U, et al. A transportable optical calcium frequency standardDedicated to J. Helmcke on the occasion of his 60th birthday[J]. Applied Physics B, 1999, 68(1): 27-38. doi: 10.1007/s003400050582
|
[52] |
SHANG H S, ZHANG X G, ZHANG SH N, et al. Miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube with 10−15 instability[J]. Optics Express, 2017, 25(24): 30459-30467. doi: 10.1364/OE.25.030459
|
[53] |
QUINN T J. Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)[J]. Metrologia, 2003, 40(2): 103-133. doi: 10.1088/0026-1394/40/2/316
|
[54] |
HILICO L, FELDER R, TOUAHRI D, et al. Metrological features of the rubidium two-photon standards of the BNM-LPTF and Kastler Brossel Laboratories[J]. The European Physical Journal: Applied Physics, 1998, 4(2): 219-225. doi: 10.1051/epjap:1998263
|
[55] |
MARTIN K W, PHELPS G, LEMKE N D, et al. Compact optical atomic clock based on a two-photon transition in rubidium[J]. Physical Review Applied, 2018, 9(1): 014019. doi: 10.1103/PhysRevApplied.9.014019
|
[56] |
JANA S, SAHOO B K, SHARMA A. Progress towards the development of a portable all-optical atomic clock based on a two-photon transition in warm atomic vapor[C]. 2022 URSI Regional Conference on Radio Science, IEEE, 2022: 1-4.
|
[57] |
孟一鸣, 项静峰, 徐斌, 等. 铷87原子双光子跃迁光谱稳频特性研究[J]. 中国金宝搏188软件怎么用
,2023,50(23):2301013.
MENG Y M, XIANG J F, XU B, et al. Frequency stabilization characteristics of 87Rb two-photon transition spectrum[J]. Chinese Journal of Lasers, 2023, 50(23): 2301013. (in Chinese).
|
[58] |
CHU C H, SHIH Y J, CHANG P CH, et al. Frequency of the unmodulated 778-nm rubidium clock measured in high vacuum[C]. 2023 Conference on Lasers and Electro-Optics, IEEE, 2023: 1-2.
|
[59] |
NEZ F, PLIMMER M D, BOURZEIX S, et al. First pure frequency measurement of an optical transition in atomic hydrogen: better determination of the Rydberg constant[J]. Europhysics Letters, 1993, 24(8): 635-640. doi: 10.1209/0295-5075/24/8/003
|
[60] |
SCHWOB C, JOZEFOWSKI L, DE BEAUVOIR B, et al. Optical frequency measurement of the 2S-12D transitions in hydrogen and deuterium: rydberg constant and lamb shift determinations[J]. Physical Review Letters, 1999, 82(25): 4960-4963. doi: 10.1103/PhysRevLett.82.4960
|
[61] |
KIRAN KUMAR P V, SURYANARAYANA M V. Precision two-photon spectroscopy of alkali elements[J]. Pramana, 2014, 83(2): 189-219. doi: 10.1007/s12043-014-0789-3
|
[62] |
JADUSZLIWER B, CAMPARO J. Past, present and future of atomic clocks for GNSS[J]. GPS Solutions, 2021, 25(1): 27. doi: 10.1007/s10291-020-01059-x
|
[63] |
VASILENKO L S, CHEBOTAEV V P, SHISHAEV A V. Line shape of two-photon absorption in a standing-wave field in a gas[J]. Journal of Experimental and Theoretical Physics Letters, 1970, 12(3): 113-116.
|
[64] |
冯晨, 吕杭哲, 段剑, 等. 基于双光子光谱的光学频率标准[J]. 计测技术,2023,43(4):103-112. doi: 10.11823/j.issn.1674-5795.2023.04.08
FENG CH, LYU H ZH, DUAN J, et al. Optical frequency standard based on two-photon spectroscopy[J]. Metrology & Measurement Technology, 2023, 43(4): 103-112. (in Chinese). doi: 10.11823/j.issn.1674-5795.2023.04.08
|
[65] |
DEMTRÖDER W. Laser Spectroscopy 2: Experimental Techniques[M]. Berlin: Springer, 2008.
|
[66] |
BIRABEN F, CAGNAC B, GRYNBERG G. Experimental evidence of two-photon transition without Doppler broadening[J]. Physical Review Letters, 1974, 32(12): 643-645. doi: 10.1103/PhysRevLett.32.643
|
[67] |
SHENG D, PÉREZ GALVÁN A, OROZCO L A. Lifetime measurements of the 5d states of rubidium[J]. Physical Review A, 2008, 78(6): 062506. doi: 10.1103/PhysRevA.78.062506
|
[68] |
范鹏瑞, 李一鸿, 李少华, 等. 利用铷原子双光子跃迁产生420nm蓝光的实验研究[J]. 量子光学学报,2017,23(2):144-150.
FAN P R, LI Y H, LI SH H, et al. Experimental investigation on the 420 nm blue light generated by two-photon transition of Rb[J]. Journal of Quantum Optics, 2017, 23(2): 144-150. (in Chinese).
|
[69] |
LEVENSON M D, BLOEMBERGEN N. Observation of two-photon absorption without doppler broadening on the 3S-5S transition in sodium vapor[J]. Physical Review Letters, 1974, 32(12): 645-648. doi: 10.1103/PhysRevLett.32.645
|
[70] |
KATO Y, STOICHEFF B P. Two-photon absorption to highly excited D states of Rb atoms[J]. Journal of the Optical Society of America, 1976, 66(5): 490-492. doi: 10.1364/JOSA.66.000490
|
[71] |
NEZ F, BIRABEN F, FELDER R, et al. Optical frequency determination of the hyperfine components of the 5S12-5D32 two-photon transitions in rubidium[J]. Optics Communications, 1993, 102(5-6): 432-438. doi: 10.1016/0030-4018(93)90417-4
|
[72] |
FELDER R, TOUAHRI D, ACEF O, et al. Performance of a GaAlAs laser diode stabilized on a hyperfine component of two-photon transitions in rubidium at 778 nm[J]. Proceedings of SPIE, 1995, 2378: 52-57. doi: 10.1117/12.208244
|
[73] |
SHUKLA V, NATH S K, NAIK V, et al. Studies on rubidium 5S-5d two-photon absorption[J]. Journal of Modern Optics, 2021, 68(6): 311-321. doi: 10.1080/09500340.2021.1894361
|
[74] |
POULIN M, LATRASSE C, TOUAHRI D, et al. Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms[J]. Optics Communications, 2002, 207(1-6): 233-242. doi: 10.1016/S0030-4018(02)01354-8
|
[75] |
EDWARDS C S, BARWOOD G P, MARGOLIS H S, et al. Development and absolute frequency measurement of a pair of 778 nm two-photon rubidium standards[J]. Metrologia, 2005, 42(5): 464-467. doi: 10.1088/0026-1394/42/5/018
|
[76] |
RIEHLE F. Frequency Standards: Basics and Applications[M]. Weinheim: Wiley-VCH, 2004.
|
[77] |
ZHU M, STANDRIDGE R W. Optical frequency standard for optical fiber communication based on the Rb 5s→ 5d two-photon transition[J]. Optics Letters, 1997, 22(10): 730-732. doi: 10.1364/OL.22.000730
|
[78] |
AWAJI Y, NAKAGAWA K, DE LABACHELERIE M, et al. Optical frequency measurement of the H12C14N Lamb-dip-stabilized 1.5-μm diode laser[J]. Optics Letters, 1995, 20(19): 2024-2026. doi: 10.1364/OL.20.002024
|
[79] |
TERRA O, HUSSEIN H. An ultra-stable optical frequency standard for telecommunication purposes based upon the 5S1/2→5D5/2 two-photon transition in Rubidium[J]. Applied Physics B, 2016, 122(2): 27. doi: 10.1007/s00340-015-6309-4
|
[80] |
MAURICE V, NEWMAN Z L, DICKERSON S, et al. Miniaturized optical frequency reference for next-generation portable optical clocks[J]. Optics Express, 2020, 28(17): 24708-24720. doi: 10.1364/OE.396296
|
[81] |
NEWMAN Z L, MAURICE V, FREDRICK C, et al. High-performance, compact optical standard[J]. Optics Letters, 2021, 46(18): 4702-4705. doi: 10.1364/OL.435603
|
[82] |
NEWMAN Z L, MAURICE V, DRAKE T, et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 2019, 6(5): 680-685. doi: 10.1364/OPTICA.6.000680
|
[83] |
COTE K, JACKSON S, ZAZO R, et al. The stratospheric optical rubidium clock experiment[C]. 70th International Astronautical Congress, IAF, 2019.
|
[84] |
PERRELLA C, LIGHT P S, ANSTIE J D, et al. Dichroic two-photon rubidium frequency standard[J]. Physical Review Applied, 2019, 12(5): 054063. doi: 10.1103/PhysRevApplied.12.054063
|
[85] |
LOCKE C R, NG S, SCARABEL J, et al. Portable optical atomic clock based on a dichroic two-photon transition in rubidium[C]. 2023 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, IEEE, 2023: 1-2.
|
[86] |
ZHANG S Y, WU J T, ZHANG Y L, et al. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms[J]. Scientific Reports, 2015, 5: 15114. doi: 10.1038/srep15114
|
[87] |
WU J T, HOU D, QIN ZH Y, et al. Observation of Rb two-photon absorption directly excited by an erbium-fiber-laser-based optical frequency comb via spectral control[J]. Physical Review A, 2014, 89(4): 041402(R).
|
[88] |
LENG J X, XU H, LU H Y, et al. Optical communication frequency standard using a fiber laser to excite cold rubidium two-photon transition[J]. Journal of the Optical Society of America B, 2019, 36(5): 1183-1188. doi: 10.1364/JOSAB.36.001183
|
[89] |
LI D, LIU K Q, WANG P F, et al. Dual-interrogation method for suppressing light shift in Rb 778 nm two-photon transition optical frequency standard[J]. Optics Express, 2024, 32(2): 2766-2773. doi: 10.1364/OE.512205
|
[90] |
王铿淇, 郭进先. 基于铷原子双光子跃迁的原子谱线展宽机制教学演示[J]. 物理与工程,2023,33(2):119-125. doi: 10.3969/j.issn.1009-7104.2023.02.019
WANG K Q, GUO J X. Teaching demonstration of spectrum broadening in two-photo transition of RB[J]. Physics and Engineering, 2023, 33(2): 119-125. (in Chinese). doi: 10.3969/j.issn.1009-7104.2023.02.019
|
[91] |
ZHANG Y CH, WU J ZH, LI Y Q, et al. A direct frequency comb for two-photon transition spectroscopy in a cesium vapor[J]. Chinese Physics B, 2012, 21(11): 113701. doi: 10.1088/1674-1056/21/11/113701
|
[92] |
ZHANG Y CH, FAN P R, YUAN J P, et al. High-resolution rb two-photon transition spectroscopy by a femtosecond frequency comb via pulses control[J]. Chinese Physics Letters, 2016, 33(11): 113201. doi: 10.1088/0256-307X/33/11/113201
|
[93] |
https://afresearchlab.com/technology/nts-3. (查阅网上资料,请补充完整信息) .
|
[94] |
LEMKE N D, PHELPS G, BURKE J H, et al. The optical rubidium atomic frequency standard at AFRL[C]. 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, IEEE, 2017: 466-467.
|
[95] |
LEMKE N D, MARTIN K W, BEARD R, et al. Measurement of optical rubidium clock frequency spanning 65 days[J]. Sensors, 2022, 22(5): 1982. doi: 10.3390/s22051982
|
[96] |
TERRA O, HUSSEIN H. An ultra-stable optical frequency standard for telecommunication purposes based upon the 5S1/2→5D5/2 two-photon transition in rubidium[J]. Applied Physics B, 2016, 122(2): 27. (查阅网上资料, 本条文献和第79条文献重复, 请核对) .
|
[97] |
GERGINOV V, BELOY K. Two-photon optical frequency reference with active ac Stark shift cancellation[J]. Physical Review Applied, 2018, 10(1): 014031. doi: 10.1103/PhysRevApplied.10.014031
|
[98] |
NGUYEN T N, SCHIBLI T R. Temperature-shift-suppression scheme for two-photon two-color rubidium vapor clocks[J]. Physical Review A, 2022, 106(5): 053104. doi: 10.1103/PhysRevA.106.053104
|
[99] |
薛文祥, 陈江, 杜志静, 等. 温度对POP Rb原子钟性能影响的研究[J]. 时间频率学报,2012,35(3):129-136. doi: 10.3969/j.issn.1674-0637.2012.03.001
XUE W X, CHEN J, DU ZH J, et al. Study of the temperature effect on POP Rb atomic clock[J]. Journal of Time and Frequency, 2012, 35(3): 129-136. (in Chinese). doi: 10.3969/j.issn.1674-0637.2012.03.001
|
[100] |
ROSLUND J D, CINGÖZ A, LUNDEN W D, et al. Optical clocks at sea[J]. Nature, 2024, 628(8009): 736-740. doi: 10.1038/s41586-024-07225-2
|
[101] |
沈自才, 崔云, 牛锦超. 金宝搏188软件怎么用
技术在航天工程中的应用及对策[J]. 红外与金宝搏188软件怎么用
工程,2012,41(10):2703-2711. doi: 10.3969/j.issn.1007-2276.2012.10.028
SHEN Z C, CUI Y, NIU J CH. Applications and countermeasures of laser technology in space engineering[J]. Infrared and Laser Engineering, 2012, 41(10): 2703-2711. (in Chinese). doi: 10.3969/j.issn.1007-2276.2012.10.028
|