Citation: | ZOU Hong-yang, ZHAN Jun-tong, LI Wen-jun, ZHANG Su, FU Qiang, DUAN Jin, LI Ying-chao, LIU Hong-yu. Study on visible polarization characteristics of airport ground material based on BPDF correction[J]. Chinese Optics. doi: 10.37188/CO.2024-0158 |
In order to study the polarization characteristics of typical airport ground materials, this paper provides a theoretical model. This model is required for the development of polarization imaging instruments. Based on the P-G model, it first analyzes serious shadow masking effects. These effects occur when light is incident at a large angle. It then optimizes the shadow masking function using the spherical trigonometry formula. This optimization equates the specular reflection point to a three-dimensional sphere. Due to the unique dispersion characteristics of different targets, a new bidirectional polarization distribution function (BPDF) model is introduced. This model replaces the traditional BRDF parameter affected by wavelength and body scattering. The new BPDF model integrates diffuse reflection and body scattering. In the experimental stage, the accuracy of line polarization degree is calibrated. The line polarization degree of typical airport ground material is fitted with model parameters. This fitting is based on the dynamic TS algorithm through multi-angle BRDF experiments. The fitting model's six parameters are used to obtain the root mean square roughness parameter. This process verifies the validity of the modified BPDF model. In the simulation stage, the root mean square error (RMSE) is used as the accuracy index. The modified BPDF model, control model, and experimental results are compared. This comparison analyzes the effects of detection angle, azimuth angle, and incidence angle on polarization characteristics. The accuracies of four experimental targets improved by 4.39%, 4.00%, 4.17%, and 5.26%. This is compared with the control model. The root mean square error is less than 0.05 for large detection angles. This allows the modified model to study polarization characteristics of rough materials like airport ground targets. Finally, the effect of fitting parameters on polarization characteristics is simulated. Results show that line polarization is positively related to the refractive index. It is inversely related to surface roughness. The accuracy of the modified BPDF model is thus proved. This provides ideas for studying polarization characteristics of airport ground targets.
[1] |
付强, 战俊彤, 张肃, 等. 恶劣条件下多谱段偏振目视辅助光学成像技术[J]. 光学学报,2023,43(15):1511004. doi: 10.3788/AOS230961
FU Q, ZHAN J T, ZHANG S, et al. Multispectral polarization visually assisted optical imaging technology under harsh conditions[J]. Acta Optica Sinica, 2023, 43(15): 1511004. (in Chinese). doi: 10.3788/AOS230961
|
[2] |
段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J]. 红外技术,2014,36(3):190-195. doi: 10.11846/j.issn.1001_8891.201403003
DUAN J, FU Q, MO CH H, et al. Review of polarization imaging technology for international military application I[J]. Infrared Technology, 2014, 36(3): 190-195. (in Chinese). doi: 10.11846/j.issn.1001_8891.201403003
|
[3] |
胡浩丰, 黄一钊, 朱震, 等. 基于深度学习复杂环境的偏振成像技术研究进展(特邀)[J]. 红外与金宝搏188软件怎么用
工程,2024,53(3):20240057. doi: 10.3788/IRLA20240057
HU H F, HUANG Y Z, ZHU ZH, et al. Research progress on polarimetric imaging technology in complex environments based on deep learning[J]. Infrared and Laser Engineering, 2024, 53(3): 20240057. (in Chinese). doi: 10.3788/IRLA20240057
|
[4] |
WANG Y, SU Y Q, SUN X Y, et al. Principle and implementation of stokes vector polarization imaging technology[J]. Applied Sciences, 2022, 12(13): 6613. doi: 10.3390/app12136613
|
[5] |
ZHONG A Q, FU Q, HUANG D F, et al. Performance analysis of joint imaging system with polarized, infrared, and visible cameras for multi-sensor imaging[J]. Optik, 2023, 295: 171512. doi: 10.1016/j.ijleo.2023.171512
|
[6] |
李淑军, 姜会林, 朱京平, 等. 偏振成像探测技术发展现状及关键技术[J]. 中国光学,2013,6(6):803-809.
LI S J, JIANG H L, ZHU J P, et al. Development status and key technologies of polarization imaging detection[J]. Chinese Optics, 2013, 6(6): 803-809. (in Chinese).
|
[7] |
王佳林, 段锦, 付强, 等. 基于Mueller矩阵的偏振抑制反光方法[J]. 光学学报,2023,43(20):2012003. doi: 10.3788/AOS230572
WANG J L, DUAN J, FU Q, et al. Polarization suppression reflection method based on Mueller matrix[J]. Acta Optica Sinica, 2023, 43(20): 2012003. (in Chinese). doi: 10.3788/AOS230572
|
[8] |
PRIEST R G, GERMER T. Polarimetric BRDF in the microfacet model: theory and measurements[C]. Proceeding of 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, 2000, 1: 169-181. (查阅网上资料, 未找到本条文献出版者信息, 请补充) .
|
[9] |
尚可, 晏磊, 张飞舟, 等. 从BRDF到BPDF: 遥感反演基础模型的演进初探[J]. 中国科学: 信息科学,2024,54(8):2001-2020. doi: 10.1360/SSI-2023-0193
SHANG K, YAN L, ZHANG F ZH, et al. From BRDF to BPDF: a premilinary study on evolution of the basic remote sensing quantitative inversion model[J]. Scientia Sinica Informationis, 2024, 54(8): 2001-2020. (in Chinese). doi: 10.1360/SSI-2023-0193
|
[10] |
LIU S Y, LIN Y, YAN L, et al. Modeling bidirectional polarization distribution function of land surfaces using machine learning techniques[J]. Remote Sensing, 2020, 12(23): 3891. doi: 10.3390/rs12233891
|
[11] |
白鹏涛, 孙兴伟, 董祉序, 等. 基于改进的微面元偏振BRDF模型的粗糙表面偏振反射特性分析[J]. 金宝搏188软件怎么用
杂志,2022,43(8):24-29.
BAI P T, SUN X W, DONG ZH X, et al. Analysis of rough surface polarization reflection characteristics based on improved micro-surface polarization BRDF model[J]. Laser Journal, 2022, 43(8): 24-29. (in Chinese).
|
[12] |
张潞, 樊金浩, 鲁宇轩, 等. 改进鲸鱼优化算法的壁面红外反射特性求解[J]. 中国光学(中英文),2024,17(3):595-604. doi: 10.37188/CO.2023-0095
ZHANG L, FAN J H, LU Y X, et al. Infrared reflection characteristics of the wall solved by improved whale optimization algorithm[J]. China Optics, 2024, 17(3): 595-604. (in Chinese). doi: 10.37188/CO.2023-0095
|
[13] |
ZHAN H Y, VOELZ D G, KUPINSKI M. Parameter-based imaging from passive multispectral polarimetric measurements[J]. Optics Express, 2019, 27(20): 28832-28843. doi: 10.1364/OE.27.028832
|
[14] |
RENHORN I G E, BOREMAN G D, et al. Developing a generalized BRDF model from experimental data[J]. Optics Express, 2018, 26(13): 17099-17114. doi: 10.1364/OE.26.017099
|
[15] |
YANG M, XU W B, SUN ZH Y, et al. Degree of polarization modeling based on modified microfacet pBRDF model for material surface[J]. Optics Communications, 2019, 453: 124390. doi: 10.1016/j.optcom.2019.124390
|
[16] |
刘卿, 战永红, 杨迪, 等. 粗糙表面偏振二向反射分布函数的影响参数及其反演[J]. 飞行器测控学报,2015,34(5):481-488.
LIU Q, ZHAN Y H, YANG D, et al. Parameters of the polarimetric bidirectional reflectance distribution function of rough surfaces and parameter inversion[J]. Journal of Spacecraft TT & C Technology, 2015, 34(5): 481-488. (in Chinese).
|
[17] |
RENHORN I G E, HALLBERG T, BOREMAN G D. Efficient polarimetric BRDF model[J]. Optics Express, 2015, 23(24): 31253-31273. doi: 10.1364/OE.23.031253
|
[18] |
韦统方. BRDF优化统计建模及应用[D]. 西安: 西安电子科技大学, 2012.
WEI T F. The optimized statistical modeling for BRDF and its application[D]. Xi’an: Xi'an University of Electronic Science and Technology, 2012. (in Chinese).
|
[19] |
MINNAERT M. The reciprocity principle in lunar photometry[J]. Astrophysical Journal, 1941, 93: 403-410. doi: 10.1086/144279
|
[20] |
FU Q, LIU X W, WAMG L T, et al. Analysis of target surface polarization characteristics and inversion of complex refractive index based on three-component model optimization[J]. Optics & Laser Technology, 2023, 162: 109225.
|
[21] |
郁道银. 工程光学[M]. 2版. 北京: 机械工业出版社, 2006.
YU D Y. Engineering Optics[M]. 2nd ed. Beijing: China Machine Press, 2006. (in Chinese) (查阅网上资料, 未找到本条文献英文信息, 请确认) .
|
[22] |
王鑫. 基于多角度多光谱偏振遥感的地物目标识别研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
WANG X. Research on ground target recongnition based on multi-angle and multispectral polarimetric remote sensing[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021. (in Chinese).
|
[23] |
WANG Y, SU Y Q, SUN X Y, et al. Principle and implementation of stokes vector polarization imaging technology[J]. Applied Sciences, 2022, 12(13): 6613. (查阅网上资料, 本条文献与第4条文献重复, 请确认) .
|
[24] |
王莉雅. 基于pBRDF模型的目标表面偏振特性分析[D]. 长春: 长春理工大学, 2022.
WANG L Y. Polarization characteristics analysis of target surface based on pBRDF model[D]. Changchun: Changchun University of Science and Technology, 2022. (in Chinese).
|
[25] |
战俊彤, 邹宏扬, 张肃, 等. 基于pBRDF与动态TS算法的粗糙度测量装置及方法: 中国, 116448020A[P]. 2023-07-18.
ZHAN J T, ZOU H Y, ZHANG S, et al. Roughness measuring device and method based on pBRDF and dynamic TS algorithm: CN, 116448020A[P]. 2023-07-18. (in Chinese).
|