Citation: | WANG Yu-ning, ZHENG Quan, SU Xin, BAI Zhong-shu, ZHANG Xiu-qi, LIU Chao-zhi, LIU Wei. All-solid-state acousto-optic mode-locked laser operating at 660 nm[J].Chinese Optics.doi:10.37188/CO.EN-2023-0013 |
Red lasers with a picosecond pulse width are widely used in various fields such as industrial, medical, scientific research and information strorage due to their narrow pulse width and high peak power. This paper presents an all-solid-state laser, operating at 660 nm with picosecond pulse width, narrow band, and high conversion efficiency, which is demonstrated by the acousto-optic mode-locked (AOML) method. By optimizing the cavity and implementing external frequency doubling with two LiB3O5(LBO) crystals along with various techniques, a mode-locked red laser source with a maximum output power of 8.6 W is developed. The laser operates in a pulsed side-pumped regime and contains the mode-locked pulses with a frequency of 100 MHz and a pulse width of 887 ps. The optical-to-optical conversion efficiency from 1319 nm to 660 nm can reach up to 41%.
[1] |
NESHASTEH-RIZ A, RAMEZANI F, KOOKLI K,
et al. Optimization of the duration and dose of photobiomodulation therapy (660 nm Laser) for spinal cord injury in rats[J].
Photobiomodulation, Photomedicine, and Laser Surgery, 2022, 40(7): 488-498.
doi:10.1089/photob.2022.0012
|
[2] |
AZADIKHAH F, KARIMI A R. Injectable photosensitizing supramolecular hydrogels: A robust physically cross-linked system based on polyvinyl alcohol/chitosan/tannic acid with self-healing and antioxidant properties[J].
Reactive and Functional Polymers, 2022, 173: 105212.
doi:10.1016/j.reactfunctpolym.2022.105212
|
[3] |
KANG Y, LI ZH J, LU F Y,
et al. Synthesis of red/black phosphorus-based composite nanosheets with a Z-scheme heterostructure for high-performance cancer phototherapy[J].
Nanoscale, 2022, 14(3): 766-779.
doi:10.1039/D1NR07553E
|
[4] |
ZHENG L B, DONG W J, ZHENG CH CH,
et al. Rapid photothermal detection of foodborne pathogens based on the aggregation of MPBA-AuNPs induced by MPBA using a thermometer as a readout[J].
Colloids and Surfaces B:Biointerfaces, 2022, 212: 112349.
doi:10.1016/j.colsurfb.2022.112349
|
[5] |
PIERFELICE T V, D'AMICO E, IEZZI G,
et al. Effect of a 5-aminolevulinic acid gel and 660 nm red LED light on human oral osteoblasts: a preliminary in vitro study[J].
Lasers in Medical Science, 2022, 37(9): 3671-3679.
doi:10.1007/s10103-022-03651-8
|
[6] |
XIAO Q Y, ZHANG J L, ZHONG X Y,
et al. Activation of Wnt/β-catenin signaling involves 660 nm laser radiation on epithelium and modulates lipid metabolism[J].
Biomolecules, 2022, 12(10): 1389.
doi:10.3390/biom12101389
|
[7] |
KAWANAAK S, KITAMURA S, MIYAMOTO S,
et al. 71-2:
Invited Paper: High power red laser diodes for display applications[J].
SID Symposium Digest of Technical Papers, 2022, 53(1): 953-955.
doi:10.1002/sdtp.15653
|
[8] |
MEKTEPLIOGLU M F, OZTURK Y, KÄRTNER F X,
et al. Tunable Q-switched mode-locked Cr: LiSAF laser[J].
Optics Communications, 2021, 488: 126836.
doi:10.1016/j.optcom.2021.126836
|
[9] |
ZOU J H, DONG CH CH, WANG H J,
et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format[J].
Light:Science & Applications, 2020, 9: 61.
|
[10] |
ZHU H Y, ZHANG G, HUANG C H,
et al. 8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd: YAP laser with LBO[J].
Applied Physics B, 2008, 91(3-4): 433-436.
doi:10.1007/s00340-008-3025-3
|
[11] |
ZHU H Y, ZHANG G, HUANG CH H,
et al. The study of 670.7 nm red light generated by intracavity frequency doubling of a
Q-switched Nd: YAlO
3laser[J].
Journal of Physics D:Applied Physics, 2009, 42(4): 045108.
doi:10.1088/0022-3727/42/4/045108
|
[12] |
LI L P, LI Y J, SONG Y J,
et al. 10. 3 W diode-pumped passively mode-locked Nd: YAG laser at 1319 nm with a semiconductor saturable absorber mirror[J].
Laser Physics, 2019, 29(9): 095001.
|
[13] |
LIU X CH, ZHANG F F, WANG ZH M. 13 W continuous-wave intracavity frequency-doubled Nd: YAP/LBO laser at 670.8 nm[J].
Optical Review, 2020, 27(6): 493-497.
doi:10.1007/s10043-020-00619-3
|
[14] |
HSIEH C L, HUANG H J, CHEN CH L,
et al. Selectable two-wavelength Nd: YVO
4Raman laser at 671 and 714 nm[J].
Optics Letters, 2023, 48(6): 1510-1513.
doi:10.1364/OL.484513
|
[15] |
YAO J, ZHENG Q, WANG Y N,
et al. High-power narrow-band mode-locked sodium laser via double-stage sum-frequency generation[J].
Laser Physics, 2020, 30(8): 085002.
doi:10.1088/1555-6611/ab9832
|
[16] |
ZHU H Y, ZHANG G, HUANG CH H,
et al. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd: YAG laser[J].
Applied Optics, 2007, 46(3): 384-388.
doi:10.1364/AO.46.000384
|
[17] |
BIAN Q, BO Y, ZUO J W,
et al. 1338-nm single wavelength operation of acousto-optic Q-switched Nd: YAG laser[J].
IEEE Photonics Technology Letters, 2022, 34(11): 567-570.
doi:10.1109/LPT.2022.3173169
|
[18] |
LIU H T, GONG M L. Compact corner-pumped Nd: YAG/YAG composite slab laser[J].
Optics Communications, 2010, 283(6): 1062-1066.
doi:10.1016/j.optcom.2009.11.009
|
[19] |
BIAN Q, BO Y, ZUO J W,
et al. High-power wavelength-tunable and power-ratio-controllable dual-wavelength operation at 1319 nm and 1338 nm in a
Q-switched Nd: YAG laser[J].
Photonics Research, 2022, 10(10): 2287-2292.
doi:10.1364/PRJ.462168
|