Volume 15Issue 1
Jan. 2022
Turn off MathJax
Article Contents
LU Teng-fei, LIU Yong-xin, WU Zhi-jun. Experimental investigation on propagation characteristics of vortex beams in underwater turbulence with different salinity[J]. Chinese Optics, 2022, 15(1): 111-118. doi: 10.37188/CO.EN.2021-0001
Citation: LU Teng-fei, LIU Yong-xin, WU Zhi-jun. Experimental investigation on propagation characteristics of vortex beams in underwater turbulence with different salinity[J].Chinese Optics, 2022, 15(1): 111-118.doi:10.37188/CO.EN.2021-0001

Experimental investigation on propagation characteristics of vortex beams in underwater turbulence with different salinity

doi:10.37188/CO.EN.2021-0001
Funds:Supported by National National Science Foundation of China (No. 61505059, No. 61575070, No. 61275203); Postgraduates’ Innovative Fund in Scientific Research of Huaqiao University
More Information
  • Author Bio:

    LU Teng-fei (1994—), male, born in Zhoukou, Henan, master student. His research interest is laser transmission and transformation. E-mail:1805440176@qq.com

    LIU Yong-xin (1979—), female, born in Dingzhou, Hebei, Ph. D., associate professor. Her research interest covers laser transmission and transformation. E-mail:yongxin@hqu.edu.cn

  • Corresponding author:yongxin@hqu.edu.cn
  • Received Date:19 Jan 2021
  • Rev Recd Date:01 Mar 2021
  • Available Online:30 Apr 2021
  • Publish Date:19 Jan 2022
  • It is very important to study the propagation characteristics of light beams in ocean turbulence. In order to get closer to the actual situation, we build a device which can control both the salinity and the intensity of underwater turbulence to study the propagation characteristics of vortex beams and a Gaussian beam in underwater turbulence. The results show that compared with the underwater turbulence without sea salt, the light spot will be more diffuse and the light intensity will be weaker in the underwater turbulence with sea salt. When the topological charge mis 2, the scintillation index of the vortex beam in the underwater turbulence with salinity of 4.35‰ is larger than that in the underwater turbulence with salinity of 2.42‰, no matter it is strong turbulence or weak turbulence. When the vortex beam with m=2 propagates to the same distance, the scintillation index increases with the increment of the salinity and the intensity of underwater turbulence. Under different salinity conditions, the radial scintillation index of the vortex beam with m=2 decreases firstly and then increases with the increase of the radial distance. In addition, we set up another experimental device which can transmit a longer distance. The scintillation index of the vortex beam with m=2 is much higher than that of the Gaussian beam in the underwater turbulence within 20 m propagation distance, and the scintillation indices of both the vortex beam with m=2 and the Gaussian beam increase with the increase of the propagation distance.

  • loading
  • [1]
    GÖKÇE M C, BAYKAL Y. Scintillation analysis of multiple-input single-output underwater optical links[J]. Applied Optics, 2016, 55(22): 6130-6136. doi:10.1364/AO.55.006130
    [2]
    ISHIMARU A. Wave Propagation and Scattering in Random Media[M]. New York: Academic Press, 1978.
    [3]
    HOU W L. A simple underwater imaging model[J]. Optics Letters, 2009, 34(17): 2688-2690. doi:10.1364/OL.34.002688
    [4]
    LUO B, WU G H, YIN L F, et al. Propagation of optical coherence lattices in oceanic turbulence[J]. Optics Communications, 2018, 425: 80-84. doi:10.1016/j.optcom.2018.04.076
    [5]
    ATA Y, BAYKAL Y. Effect of anisotropy on bit error rate for an asymmetrical Gaussian beam in a turbulent ocean[J]. Applied Optics, 2018, 57(9): 2258-2262. doi:10.1364/AO.57.002258
    [6]
    JOHNSON L J, GREEN R J, LEESON M S. Underwater optical wireless communications: depth dependent variations in attenuation[J]. Applied Optics, 2013, 52(33): 7867-7873. doi:10.1364/AO.52.007867
    [7]
    CHENG M J, GUO L X, LI J T, et al. Channel capacity of the OAM-based free-space optical communication links with Bessel-Gauss beams in turbulent ocean[J]. IEEE Photonics Journal, 2016, 8(1): 7901411.
    [8]
    ZHAO SH M, WANG L, ZOU L, et al. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing[J]. Optics Communications, 2016, 376: 92-98. doi:10.1016/j.optcom.2016.04.075
    [9]
    WANG ZH Q, ZHANG P F, QIAO C H, et al. Scintillation index of Gaussian waves in weak turbulent ocean[J]. Optics Communications, 2016, 380: 79-86. doi:10.1016/j.optcom.2016.05.089
    [10]
    LU T F, ZHANG K N, WU Z J, et al. Propagation properties of elliptical vortex beams in turbulent ocean[J]. Chinese Optics, 2020, 13(2): 323-332. (in Chinese) doi:10.3788/co.20201302.0323
    [11]
    LI Y, ZHANG Y X, ZHU Y. Oceanic spectrum of unstable stratification turbulence with outer scale and scintillation index of Gaussian-beam wave[J]. Optics Express, 2019, 27(5): 7656-7672. doi:10.1364/OE.27.007656
    [12]
    EYYUBOĞLU H T. Apertured averaged scintillation of fully and partially coherent Gaussian, annular Gaussian, flat toped and dark hollow beams[J]. Optics Communications, 2015, 339: 141-147. doi:10.1016/j.optcom.2014.11.070
    [13]
    BAYKAL Y. Higher order mode laser beam scintillations in oceanic medium[J]. Waves in Random and Complex Media, 2016, 26(1): 21-29. doi:10.1080/17455030.2015.1099760
    [14]
    BAYKAL Y. Scintillation index in strong oceanic turbulence[J]. Optics Communications, 2016, 375: 15-18. doi:10.1016/j.optcom.2016.05.002
    [15]
    GERÇEKCIOĞLU H. Bit error rate of focused Gaussian beams in weak oceanic turbulence[J]. Journal of the Optical Society of America A, 2014, 31(9): 1963-1968. doi:10.1364/JOSAA.31.001963
    [16]
    ATA Y, BAYKAL Y. Scintillations of optical plane and spherical waves in underwater turbulence[J]. Journal of the Optical Society of America A, 2014, 31(7): 1552-1556. doi:10.1364/JOSAA.31.001552
    [17]
    YI X, LI Z, LIU Z J. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence[J]. Applied Optics, 2015, 54(6): 1273-1278. doi:10.1364/AO.54.001273
    [18]
    YOUSEFI M, KASHANI F D, GOLMOHAMMADY S, et al. Scintillation and bit error rate analysis of a phase-locked partially coherent flat-topped array laser beam in oceanic turbulence[J]. Journal of the Optical Society of America A, 2017, 34(12): 2126-2137. doi:10.1364/JOSAA.34.002126
    [19]
    CUI Z M, YUE P, Yi X, et al. Scintillation of a partially coherent beam with pointing errors resulting from a slightly skewed underwater platform in oceanic turbulence[J]. Applied Optics, 2019, 58(16): 4443-4449. doi:10.1364/AO.58.004443
    [20]
    BRAMBILLA M, BATTIPEDE F, LUGIATO L A, et al. Transverse laser patterns. I. Phase singularity crystals[J]. Physical Review A, 1991, 43(9): 5090-5113. doi:10.1103/PhysRevA.43.5090
    [21]
    BEIJERSBERGEN M W, ALLEN L, VAN DER VEEN H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1-3): 123-132. doi:10.1016/0030-4018(93)90535-D
    [22]
    TAO S H, YUAN X C, LIN J, et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams[J]. Journal of Applied Physics, 2006, 100(4): 043105. doi:10.1063/1.2260823
    [23]
    FRIESE M E J, RUBINSZTEIN-DUNLOP H, GOLD J, et al. Optically driven micromachine elements[J]. Applied Physics Letters, 2001, 78(4): 547-549. doi:10.1063/1.1339995
    [24]
    GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456. doi:10.1364/OPEX.12.005448
    [25]
    XU J, ZHAO D M. Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence[J]. Optics& Laser Technology, 2014, 57: 189-193.
    [26]
    LIU ZH L, CHEN J L, ZHAO D M. Experimental study of propagation properties of vortex beams in oceanic turbulence[J]. Applied Optics, 2017, 56(12): 3577-3582. doi:10.1364/AO.56.003577
    [27]
    LU T F, LIU Y X, PU J X. Experimental study on scintillation index of vortex beam propagation in underwater turbulence[J]. Acta Photonica Sinica, 2019, 48(12): 1214004. (in Chinese) doi:10.3788/gzxb20194812.1214004
    [28]
    EYYUBOĞLU H T. Estimation of aperture averaged scintillations in weak turbulence regime for annular, sinusoidal and hyperbolic Gaussian beams using random phase screen[J]. Optics& Laser Technology, 2013, 52: 96-102.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(864) PDF downloads(185) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map