Volume 15Issue 1
Jan. 2022
Turn off MathJax
Article Contents
LIU Qiang, JIANG Yu, HU Chun-jie, LU Wen-shu, SUN Yu-dan, LIU Chao, LV Jing-wei, ZHAO Jin, TAI Sheng-nan, YI Zao, CHU Paul K. High-sensitivity surface plasmon resonance sensor based on the ten-fold eccentric core quasi-D-shaped photonic quasi-crystal fiber coated with indium tin oxide[J]. Chinese Optics, 2022, 15(1): 101-110. doi: 10.37188/CO.EN.2021-0006
Citation: LIU Qiang, JIANG Yu, HU Chun-jie, LU Wen-shu, SUN Yu-dan, LIU Chao, LV Jing-wei, ZHAO Jin, TAI Sheng-nan, YI Zao, CHU Paul K. High-sensitivity surface plasmon resonance sensor based on the ten-fold eccentric core quasi-D-shaped photonic quasi-crystal fiber coated with indium tin oxide[J].Chinese Optics, 2022, 15(1): 101-110.doi:10.37188/CO.EN.2021-0006

High-sensitivity surface plasmon resonance sensor based on the ten-fold eccentric core quasi-D-shaped photonic quasi-crystal fiber coated with indium tin oxide

doi:10.37188/CO.EN.2021-0006
Funds:Supported by Heilongjiang Provincial talent project (No. ts26180221); Youth Science Foundation of Northeast Petroleum University (No. 2019QNL-17); Natural Science Foundation of Heilongjiang Province (No. E2017010); the City University of Hong Kong Strategic Research Grant (SRG) (No. 7005105, No. 7005265); Scientific Research Fund of Sichuan Province Science and Technology Department (No. 2020YJ0137); Local Universities Reformation and Development Personnel Training Supporting Project from Central Authorities (No. 140119001)
More Information
  • Author Bio:

    Liu Qiang (1980—), Male, born in Tailai, Heilongjiang, Ph.D, Professor, graduated from Harbin Engineering University in 2012, and is mainly engaged in optical fiber sensing technology. E-mail:nepulq@126.com

    Liu Chao (1978—), Male, born in Mulan, Heilongjiang, Ph.D, Professor, doctoral supervisor, graduated from Harbin Institute of Technology in 2008, and is mainly engaged in micro-structured optical devices. E-mail: msm-liu@126.com

  • Corresponding author:msm-liu@126.com
  • Received Date:06 Jul 2021
  • Rev Recd Date:20 Jul 2021
  • Available Online:10 Sep 2021
  • Publish Date:19 Jan 2022
  • A high-sensitivity Surface Plasmon Resonance (SPR) sensor comprising of an eccentric core ten-fold Photonic Quasi-crystal Fiber (PQF) with a D-shaped structure and partially coated with Indium Tin Oxide (ITO) is designed and numerically analyzed. The eccentric core D-shaped structure makes the analysis of liquids more convenient and also strengthens the coupling between the core mode and Surface Plasmon Polariton (SPP) mode to improve the sensing sensitivity. The characteristics of the sensor are investigated by the Finite Element Method (FEM). The wavelength sensitivity increases with increasing Refractive Indexes (RIs) and the maximum wavelength sensitivity and resolution are 60000 nm/RIU and 1.67×10 −6RIU, respectively. The sensor delivers excellent performance and has large potential applications in the measurement of liquid refractive indexes.

  • loading
  • [1]
    BROLO A G. Plasmonics for future biosensors[J]. Nature Photonics, 2012, 6(11): 709-713. doi:10.1038/nphoton.2012.266
    [2]
    WANG Z M, SU K, FENG B, et al. Coupling length variation and multi-wavelength demultiplexing in photonic crystal waveguides[J]. Chinese Optics Letters, 2018, 16(1): 011301. doi:10.3788/COL201816.011301
    [3]
    LIANG H, ZHAN Y F, YIN H L. New observation strategy for X-ray pulsar navigation using a single detector[J]. IET Radar, Sonar& Navigation, 2016, 10(6): 1107-1111.
    [4]
    YU J L, XIANG K, WANG X Y, et al. Video stabilisation based on modelling of motion imaging[J]. IET Image Processing, 2016, 10(3): 177-188. doi:10.1049/iet-ipr.2015.0321
    [5]
    YANG H, OU K, CAO G T, et al. Polarization beam splitter with disparate functionality in transmission and reflection modes[J]. Optics Communications, 2019, 443: 104-109. doi:10.1016/j.optcom.2019.03.022
    [6]
    XIE Y, CHEN ZH X, YAN J, et al. Combination of surface Plasmon polaritons and subwavelength grating for polarization beam splitting[J]. Plasmonics, 2020, 15(1): 235-241. doi:10.1007/s11468-019-01032-6
    [7]
    YANG ZH, CHEN K, WANG CH G, et al. A photonic crystal beam splitter used for light path multiplexing: synergy of TIR and PBG light guiding[J]. Optical and Quantum Electronics, 2020, 52(2): 84. doi:10.1007/s11082-020-2224-y
    [8]
    LIU Y CH, CHEN H L, LI SH G, et al. Surface plasmon resonance-induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers[J]. Chinese Physics B, 2017, 26(10): 104211. doi:10.1088/1674-1056/26/10/104211
    [9]
    ZHAO H X, XIE J L, LIU J J. An approximate theoretical explanation for super-resolution imaging of two-dimensional photonic quasi-crystal flat lens[J]. Applied Physics Express, 2020, 13(2): 022007. doi:10.35848/1882-0786/ab6934
    [10]
    VAN TOAN N, ZHAO D, INOMATA N, et al. Logic gates based on electrically driven nanoelectromechanical switches[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(2): 335-336. doi:10.1002/tee.22814
    [11]
    YIN SH, HU F R, CHEN X Y, et al. Ruler equation for precisely tailoring the resonance frequency of terahertz U-shaped metamaterials[J]. Journal of Optics, 2019, 21(2): 025101. doi:10.1088/2040-8986/aafd86
    [12]
    SHUAI B B, XIA L, ZHANG Y T, et al. A multi-core holey fiber based plasmonic sensor with large detection range and high linearity[J]. Optics Express, 2012, 20(6): 5974-5986. doi:10.1364/OE.20.005974
    [13]
    RIFAT A A, AHMED R, YETISEN A K, et al. Photonic crystal fiber based plasmonic sensors[J]. Sensors and Actuators B: Chemical, 2017, 243: 311-325. doi:10.1016/j.snb.2016.11.113
    [14]
    DE M, SINGH V K. Analysis of a highly sensitive flat fiber plasmonic refractive index sensor[J]. Applied Optics, 2020, 59(2): 380-388. doi:10.1364/AO.59.000380
    [15]
    RIFAT A A, MAHDIRAJI G A, SUA Y M, et al. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor[J]. Optics Express, 2016, 24(3): 2485-2495. doi:10.1364/OE.24.002485
    [16]
    YAN B, WANG A R, LIU E X, et al. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber[J]. Journal of Physics D: Applied Physics, 2018, 51(15): 155105. doi:10.1088/1361-6463/aab4ce
    [17]
    YANG X CH, LU Y, LIU B L, et al. Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance[J]. Plasmonics, 2017, 12(2): 489-496. doi:10.1007/s11468-016-0289-z
    [18]
    LIU CH, WANG L Y, YANG L, et al. The single-polarization filter composed of gold-coated photonic crystal fiber[J]. Physics Letters A, 2019, 383(25): 3200-3206. doi:10.1016/j.physleta.2019.07.012
    [19]
    LIU Q, SUN J D, SUN Y D, et al. Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film[J]. Optical Materials, 2020, 102: 109800. doi:10.1016/j.optmat.2020.109800
    [20]
    KIM S, KEE C S, LEE J. Novel optical properties of six-fold symmetric photonic quasicrystal fibers[J]. Optics Express, 2007, 15(20): 13221-13226. doi:10.1364/OE.15.013221
    [21]
    LIU CH, WANG J W, WANG F M, et al. Surface Plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings[J]. Optics Communications, 2020, 464: 125496. doi:10.1016/j.optcom.2020.125496
    [22]
    WANG G Y, LI SH G, AN G W, et al. Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance[J]. Optical and Quantum Electronics, 2016, 48(1): 46. doi:10.1007/s11082-015-0346-4
    [23]
    TONG K, WANG F CH, WANG M T. D-shaped photonic crystal fiber biosensor based on silver-graphene[J]. Optik, 2018, 168: 467-474. doi:10.1016/j.ijleo.2018.04.119
    [24]
    MONFARED Y E. Refractive index sensor based on surface plasmon resonance excitation in a d-shaped photonic crystal fiber coated by titanium Nitride[J]. Plasmonics, 2020, 15(2): 535-542. doi:10.1007/s11468-019-01072-y
    [25]
    GANGWAR R K, SINGH V K. Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor[J]. Plasmonics, 2017, 12(5): 1367-1372. doi:10.1007/s11468-016-0395-y
    [26]
    MOMTAJ M, MOU J R, KAMRUNNAHAR Q M, et al. Open-channel-based dual-core D-shaped photonic crystal fiber plasmonic biosensor[J]. Applied Optics, 2020, 59(28): 8856-8865. doi:10.1364/AO.400765
    [27]
    GANGWAR R K, AMORIM V A, MARQUES P V S. High performance titanium oxide coated d-shaped optical fiber plasmonic sensor[J]. IEEE Sensors Journal, 2019, 19(20): 9244-9248. doi:10.1109/JSEN.2019.2927728
    [28]
    KAUR V, SINGH S. Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications[J]. Optical Fiber Technology, 2019, 48: 159-164. doi:10.1016/j.yofte.2018.12.015
    [29]
    BING P B, WU G F, SUI J L, et al. Double samples synchronous detection sensor based on up-core photonic crystal fiber[J]. Optik, 2020, 224: 165522. doi:10.1016/j.ijleo.2020.165522
    [30]
    RIFAT A A, AHMED R, MAHDIRAJI G A, et al. Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR[J]. IEEE Sensors Journal, 2017, 17(9): 2776-2783. doi:10.1109/JSEN.2017.2677473
    [31]
    LU J J, LI Y, HAN Y H, et al. D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating[J]. Applied Optics, 2018, 57(19): 5268-5272. doi:10.1364/AO.57.005268
    [32]
    HUANG T Y. Highly sensitive SPR sensor based on d-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength[J]. Plasmonics, 2017, 12(3): 583-588. doi:10.1007/s11468-016-0301-7
    [33]
    WU J J, LI SH G, SHI M, et al. Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon resonance[J]. Optical Fiber Technology, 2018, 43: 90-94. doi:10.1016/j.yofte.2018.04.006
    [34]
    LIU Q, SUN J D, SUN Y D, et al. Surface plasmon resonance sensor based on eccentric core photonic quasi-crystal fiber with indium tin oxide[J]. Applied Optics, 2019, 58(25): 6848-6853. doi:10.1364/AO.58.006848
    [35]
    LIU Q, SUN J D, SUN Y D, et al. High-sensitivity SPR sensor based on the eightfold eccentric core PQF with locally coated indium tin oxide[J]. Applied Optics, 2020, 59(22): 6484-6489. doi:10.1364/AO.395605
    [36]
    MARUYAMA T, FUKUI K. Indium tin oxide thin films prepared by chemical vapour deposition[J]. Thin Solid Films, 1991, 203(2): 297-302. doi:10.1016/0040-6090(91)90137-M
    [37]
    WANG J W, LIU CH, WANG F M, et al. Surface plasmon resonance sensor based on coupling effects of dual photonic crystal fibers for low refractive indexes detection[J]. Results in Physics, 2020, 18: 103240. doi:10.1016/j.rinp.2020.103240
    [38]
    LI D M, ZHANG W, LIU H, et al. High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength[J]. IEEE Photonics Journal, 2017, 9(2): 6801608.
    [39]
    LIU CH, WANG J W, JIN X, et al. Near-infrared surface plasmon resonance sensor based on photonic crystal fiber with big open rings[J]. Optik, 2020, 207: 164466. doi:10.1016/j.ijleo.2020.164466
    [40]
    AN G W, LI SH G, WANG H Y, et al. Metal oxide-graphene-based quasi-D-shaped optical fiber plasmonic biosensor[J]. IEEE Photonics Journal, 2017, 9(4): 6803909.
    [41]
    HAQUE E, HOSSAIN M A, NAMIHIRA Y, et al. Microchannel-based plasmonic refractive index sensor for low refractive index detection[J]. Applied Optics, 2019, 58(6): 1547-1554. doi:10.1364/AO.58.001547
    [42]
    KAUR V, SINGH S. Design of photonic crystal fiber surface plasmon resonance sensor with external channel approach[C]. Proceedings of the Future Technologies Conference (FTC), Springer, 2019: 841-846.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)/Tables(2)

    Article views(768) PDF downloads(153) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map