Citation: | ZHU Qin-yu, HAN Guo-qing, PENG Jian-tao, RAO Qi-long, SHEN Yi-li, CHEN Mei-rui, SUN Hui-juan, MAO Hong-min, XU Guo-ding, CAO Zhao-liang, XUAN Li. Longitudinal chromatic aberration compensation method for dual-wavelength retinal imaging adaptive optics systems[J].Chinese Optics, 2022, 15(1): 79-89.doi:10.37188/CO.EN.2021-0009 |
[1] |
LIANG J ZH, WILLIAMS D R, MILLER D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J].
Journal of the Optical Society of America A, 1997, 14(11): 2884-2892.
doi:10.1364/JOSAA.14.002884
|
[2] |
ROORDA A, WILLIAMS D R. The arrangement of the three cone classes in the living human eye[J].
Nature, 1999, 397(6719): 520-522.
doi:10.1038/17383
|
[3] |
JONNAL R S, RHA J, ZHANG Y,
et al.
In vivofunctional imaging of human cone photoreceptors[J].
Optics Express, 2007, 15(24): 16141-16160.
doi:10.1364/OE.15.016141
|
[4] |
LI K Y, ROORDA A. Automated identification of cone photoreceptors in adaptive optics retinal images[J].
Journal of the Optical Society of America A, 2007, 24(5): 1358-1363.
doi:10.1364/JOSAA.24.001358
|
[5] |
DUBRA A, SULAI Y, NORRIS J L,
et al. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope[J].
Biomedical Optics Express, 2011, 2(7): 1864-1876.
doi:10.1364/BOE.2.001864
|
[6] |
CHUI T Y P, VANNASDALE D A, BURNS S A. The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope[J].
Biomedical Optics Express, 2012, 3(10): 2537-2549.
doi:10.1364/BOE.3.002537
|
[7] |
ZAYIT-SOUDRY S, DUNCAN J L, SYED R,
et al. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration[J].
Investigative Ophthalmology&
Visual Science, 2013, 54(12): 7498-7509.
|
[8] |
QUERQUES G, KAMAMI-LEVY C, GEORGES A,
et al. Appearance of regressing drusen on adaptive optics in age-related macular degeneration[J].
Ophthalmology, 2014, 121(2): 611-612.
doi:10.1016/j.ophtha.2013.10.006
|
[9] |
PAQUES M, BROLLY A, BENESTY J,
et al. Venous nicking without arteriovenous contact: the role of the arteriolar microenvironment in arteriovenous nickings[J].
JAMA Ophthalmology, 2015, 133(8): 947-950.
doi:10.1001/jamaophthalmol.2015.1132
|
[10] |
MARTIN J A, ROORDA A. Direct and noninvasive assessment of parafoveal capillary leukocyte velocity[J].
Ophthalmology, 2005, 112(12): 2219-2224.
doi:10.1016/j.ophtha.2005.06.033
|
[11] |
HAN G Q.
High contrast imaging study of retinal capillaries in human eyes[D]. Beijing: Changchun Institute of Optics, Fine Mechanics and Physics University of Chinse Academy of Sciences, 2018: 28-30. (in Chinese)
|
[12] |
FABER D J, AALDERS M C G, MIK E G,
et al. Oxygen saturation-dependent absorption and scattering of blood[J].
Physical Review Letters, 2004, 93(2): 028102.
doi:10.1103/PhysRevLett.93.028102
|
[13] |
REINHOLZ F, ASHMAN R A, EIKELBOOM R H. Simultaneous three wavelength imaging with a scanning laser ophthalmoscope[J].
Cytometry Part A, 1999, 37(3): 165-170.
doi:10.1002/(SICI)1097-0320(19991101)37:3<165::AID-CYTO1>3.0.CO;2-A
|
[14] |
GRIEVE K, TIRUVEEDHULA P, ZHANG Y H,
et al. Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope[J].
Optics Express, 2006, 14(25): 12230-12242.
doi:10.1364/OE.14.012230
|
[15] |
NEWTON S I.
Opticks, or, A Treatise of the Reflections, Refractions, in Flections & Colours of Light[M]. 4th ed. London: G. Bell & Sons, Ltd. , 1931.
|
[16] |
WALD G, GRIFFIN D R. The change in refractive power of the human eye in dim and bright light[J].
Journal of the Optical Society of America, 1947, 37(5): 321-336.
doi:10.1364/JOSA.37.000321
|
[17] |
THIBOS L N, BRADLEY A, STILL D L,
et al. Theory and measurement of ocular chromatic aberration[J].
Vision Research, 1990, 30(1): 33-49.
doi:10.1016/0042-6989(90)90126-6
|
[18] |
FERNÁNDEZ E J, ARTAL P. Ocular aberrations up to the infrared range: from 632.8 to 1070 nm[J].
Optics Express, 2008, 16(26): 21199-21208.
doi:10.1364/OE.16.021199
|
[19] |
RUCKER F J, OSORIO D. The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast[J].
Vision Research, 2008, 48(19): 1929-1939.
doi:10.1016/j.visres.2008.06.021
|
[20] |
NAKAJIMA M, HIRAOKA T, HIROHARA Y,
et al. Verification of the lack of correlation between age and longitudinal chromatic aberrations of the human eye from the visible to the infrared[J].
Biomedical Optics Express, 2015, 6(7): 2676-2694.
doi:10.1364/BOE.6.002676
|
[21] |
VINAS M, DORRONSORO C, CORTES D,
et al. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics[J].
Biomedical Optics Express, 2015, 6(3): 948-962.
doi:10.1364/BOE.6.000948
|
[22] |
VINAS M, DORRONSORO C, GARZÓN N,
et al. In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses[J].
Journal of Cataract&
Refractive Surgery, 2015, 41(10): 2115-2124.
|
[23] |
CHONG S P, ZHANG T W, KHO A,
et al. Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization[J].
Biomedical Optics Express, 2018, 9(4): 1477-1491.
doi:10.1364/BOE.9.001477
|
[24] |
ZAWADZKI R J, CENSE B, ZHANG Y,
et al. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction[J].
Optics Express, 2008, 16(11): 8126-8143.
doi:10.1364/OE.16.008126
|
[25] |
DUBRA A, SULAI Y. Reflective afocal broadband adaptive optics scanning ophthalmoscope[J].
Biomedical Optics Express, 2011, 2(6): 1757-1768.
doi:10.1364/BOE.2.001757
|
[26] |
JIANG X Y, KUCHENBECKER J A, TOUCH P,
et al. Measuring and compensating for ocular longitudinal chromatic aberration[J].
Optica, 2019, 6(8): 981-990.
doi:10.1364/OPTICA.6.000981
|
[27] |
ZHENG X L, LIU R X, XIA M L,
et al. Temporal properties study of ocular wave aberrations with high frequency sampling[J].
Chinese Optics, 2014, 34(7): 0733001.
|
[28] |
MORGAN J I W, HUNTER J J, MASELLA B,
et al. Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium[J].
Investigative Ophthalmology&
Visual Science, 2008, 49(8): 3715-3729.
|
[29] |
DELORI F C, WEBB R H, SLINEY D H. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices[J].
Journal of the Optical Society of America A, 2007, 24(5): 1250-1265.
doi:10.1364/JOSAA.24.001250
|
[30] |
Laser Institute of America. ANSI Z136.1-2014 American national standard for safe use of lasers[S]. Orlando: American National Standards Institute, 2007: 22-29.
|
[31] |
LI CH, XIA M L, MU Q Q,
et al. High-precision open-loop adaptive optics system based on LC-SLM[J].
Optics Express, 2009, 17(13): 10774-10781.
doi:10.1364/OE.17.010774
|
[32] |
YANG L B, HU L F, LI D Y,
et al. Determining the imaging plane of a retinal capillary layer in adaptive optical imaging[J].
Chinese Physics B, 2016, 25(9): 094219.
doi:10.1088/1674-1056/25/9/094219
|
[33] |
BURNS S A, ELSNER A E, CHUI T Y,
et al.
In vivoadaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy[J].
Biomedical Optics Express, 2014, 5(3): 961-974.
doi:10.1364/BOE.5.000961
|