Volume 15Issue 1
Jan. 2022
Turn off MathJax
Article Contents
ZHU Qin-yu, HAN Guo-qing, PENG Jian-tao, RAO Qi-long, SHEN Yi-li, CHEN Mei-rui, SUN Hui-juan, MAO Hong-min, XU Guo-ding, CAO Zhao-liang, XUAN Li. Longitudinal chromatic aberration compensation method for dual-wavelength retinal imaging adaptive optics systems[J]. Chinese Optics, 2022, 15(1): 79-89. doi: 10.37188/CO.EN.2021-0009
Citation: ZHU Qin-yu, HAN Guo-qing, PENG Jian-tao, RAO Qi-long, SHEN Yi-li, CHEN Mei-rui, SUN Hui-juan, MAO Hong-min, XU Guo-ding, CAO Zhao-liang, XUAN Li. Longitudinal chromatic aberration compensation method for dual-wavelength retinal imaging adaptive optics systems[J].Chinese Optics, 2022, 15(1): 79-89.doi:10.37188/CO.EN.2021-0009

Longitudinal chromatic aberration compensation method for dual-wavelength retinal imaging adaptive optics systems

doi:10.37188/CO.EN.2021-0009
Funds:Supported by China Jiangsu Key Disciplines of the Thirteenth Five-Year Plan (No. 20168765); Industry-University-Institute Cooperation Foundation of the Eighth Research Institute of China Aerospace Science and Technology Corporation (No. SAST2020-025); Academic Research Projects of Beijing Union University (No. ZK70202007).
More Information
  • Author Bio:

    ZHU Qin-yu(1997—), male, born in Wuxi, Jiangsu Province, master student. He received his bachelor's degree from Changshu Institute of Technology in 2019. He is mainly engaged in the research of photoelectric instruments and intelligent detection technology. E-mail:zhuqywx@163.com

    CAO Zhao-liang(1974—), male, born in Jiyuan, Henan Province, Ph.D., professor and doctoral supervisor. He received his Ph.D. from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2008. He is mainly engaged in research of liquid crystal adaptive optical system: optical design, optical experiment, theoretical analysis and simulation. E-mail:caozl@usts.edu.cn

  • Corresponding author:caozl@usts.edu.cn
  • Received Date:06 Sep 2021
  • Rev Recd Date:26 Sep 2021
  • Available Online:22 Oct 2021
  • Publish Date:19 Jan 2022
  • Dual-wavelength retinal imaging adaptive optics systems are suitable for high contrast and resolution imaging of retinal capillaries. The compensation of the Longitudinal Chromatic Aberrations (LCAs) in dual-wavelength adaptive systems is researched. The LCA is measured, the measured wavefronts are analyzed, and the arbitrary wavefront LCA compensation method is given. An adaptive correction experiment is carried out and the experimental results indicate that the root mean square error of the wavefront is reduced to 0.16 λ (λ=589 nm) and the retinal capillary resolution is improved to 6 μm. This work may be used for the clinical applications of retinal imaging.

  • loading
  • [1]
    LIANG J ZH, WILLIAMS D R, MILLER D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. Journal of the Optical Society of America A, 1997, 14(11): 2884-2892. doi:10.1364/JOSAA.14.002884
    [2]
    ROORDA A, WILLIAMS D R. The arrangement of the three cone classes in the living human eye[J]. Nature, 1999, 397(6719): 520-522. doi:10.1038/17383
    [3]
    JONNAL R S, RHA J, ZHANG Y, et al. In vivofunctional imaging of human cone photoreceptors[J]. Optics Express, 2007, 15(24): 16141-16160. doi:10.1364/OE.15.016141
    [4]
    LI K Y, ROORDA A. Automated identification of cone photoreceptors in adaptive optics retinal images[J]. Journal of the Optical Society of America A, 2007, 24(5): 1358-1363. doi:10.1364/JOSAA.24.001358
    [5]
    DUBRA A, SULAI Y, NORRIS J L, et al. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope[J]. Biomedical Optics Express, 2011, 2(7): 1864-1876. doi:10.1364/BOE.2.001864
    [6]
    CHUI T Y P, VANNASDALE D A, BURNS S A. The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope[J]. Biomedical Optics Express, 2012, 3(10): 2537-2549. doi:10.1364/BOE.3.002537
    [7]
    ZAYIT-SOUDRY S, DUNCAN J L, SYED R, et al. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration[J]. Investigative Ophthalmology& Visual Science, 2013, 54(12): 7498-7509.
    [8]
    QUERQUES G, KAMAMI-LEVY C, GEORGES A, et al. Appearance of regressing drusen on adaptive optics in age-related macular degeneration[J]. Ophthalmology, 2014, 121(2): 611-612. doi:10.1016/j.ophtha.2013.10.006
    [9]
    PAQUES M, BROLLY A, BENESTY J, et al. Venous nicking without arteriovenous contact: the role of the arteriolar microenvironment in arteriovenous nickings[J]. JAMA Ophthalmology, 2015, 133(8): 947-950. doi:10.1001/jamaophthalmol.2015.1132
    [10]
    MARTIN J A, ROORDA A. Direct and noninvasive assessment of parafoveal capillary leukocyte velocity[J]. Ophthalmology, 2005, 112(12): 2219-2224. doi:10.1016/j.ophtha.2005.06.033
    [11]
    HAN G Q. High contrast imaging study of retinal capillaries in human eyes[D]. Beijing: Changchun Institute of Optics, Fine Mechanics and Physics University of Chinse Academy of Sciences, 2018: 28-30. (in Chinese)
    [12]
    FABER D J, AALDERS M C G, MIK E G, et al. Oxygen saturation-dependent absorption and scattering of blood[J]. Physical Review Letters, 2004, 93(2): 028102. doi:10.1103/PhysRevLett.93.028102
    [13]
    REINHOLZ F, ASHMAN R A, EIKELBOOM R H. Simultaneous three wavelength imaging with a scanning laser ophthalmoscope[J]. Cytometry Part A, 1999, 37(3): 165-170. doi:10.1002/(SICI)1097-0320(19991101)37:3<165::AID-CYTO1>3.0.CO;2-A
    [14]
    GRIEVE K, TIRUVEEDHULA P, ZHANG Y H, et al. Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope[J]. Optics Express, 2006, 14(25): 12230-12242. doi:10.1364/OE.14.012230
    [15]
    NEWTON S I. Opticks, or, A Treatise of the Reflections, Refractions, in Flections & Colours of Light[M]. 4th ed. London: G. Bell & Sons, Ltd. , 1931.
    [16]
    WALD G, GRIFFIN D R. The change in refractive power of the human eye in dim and bright light[J]. Journal of the Optical Society of America, 1947, 37(5): 321-336. doi:10.1364/JOSA.37.000321
    [17]
    THIBOS L N, BRADLEY A, STILL D L, et al. Theory and measurement of ocular chromatic aberration[J]. Vision Research, 1990, 30(1): 33-49. doi:10.1016/0042-6989(90)90126-6
    [18]
    FERNÁNDEZ E J, ARTAL P. Ocular aberrations up to the infrared range: from 632.8 to 1070 nm[J]. Optics Express, 2008, 16(26): 21199-21208. doi:10.1364/OE.16.021199
    [19]
    RUCKER F J, OSORIO D. The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast[J]. Vision Research, 2008, 48(19): 1929-1939. doi:10.1016/j.visres.2008.06.021
    [20]
    NAKAJIMA M, HIRAOKA T, HIROHARA Y, et al. Verification of the lack of correlation between age and longitudinal chromatic aberrations of the human eye from the visible to the infrared[J]. Biomedical Optics Express, 2015, 6(7): 2676-2694. doi:10.1364/BOE.6.002676
    [21]
    VINAS M, DORRONSORO C, CORTES D, et al. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics[J]. Biomedical Optics Express, 2015, 6(3): 948-962. doi:10.1364/BOE.6.000948
    [22]
    VINAS M, DORRONSORO C, GARZÓN N, et al. In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses[J]. Journal of Cataract& Refractive Surgery, 2015, 41(10): 2115-2124.
    [23]
    CHONG S P, ZHANG T W, KHO A, et al. Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization[J]. Biomedical Optics Express, 2018, 9(4): 1477-1491. doi:10.1364/BOE.9.001477
    [24]
    ZAWADZKI R J, CENSE B, ZHANG Y, et al. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction[J]. Optics Express, 2008, 16(11): 8126-8143. doi:10.1364/OE.16.008126
    [25]
    DUBRA A, SULAI Y. Reflective afocal broadband adaptive optics scanning ophthalmoscope[J]. Biomedical Optics Express, 2011, 2(6): 1757-1768. doi:10.1364/BOE.2.001757
    [26]
    JIANG X Y, KUCHENBECKER J A, TOUCH P, et al. Measuring and compensating for ocular longitudinal chromatic aberration[J]. Optica, 2019, 6(8): 981-990. doi:10.1364/OPTICA.6.000981
    [27]
    ZHENG X L, LIU R X, XIA M L, et al. Temporal properties study of ocular wave aberrations with high frequency sampling[J]. Chinese Optics, 2014, 34(7): 0733001.
    [28]
    MORGAN J I W, HUNTER J J, MASELLA B, et al. Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium[J]. Investigative Ophthalmology& Visual Science, 2008, 49(8): 3715-3729.
    [29]
    DELORI F C, WEBB R H, SLINEY D H. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices[J]. Journal of the Optical Society of America A, 2007, 24(5): 1250-1265. doi:10.1364/JOSAA.24.001250
    [30]
    Laser Institute of America. ANSI Z136.1-2014 American national standard for safe use of lasers[S]. Orlando: American National Standards Institute, 2007: 22-29.
    [31]
    LI CH, XIA M L, MU Q Q, et al. High-precision open-loop adaptive optics system based on LC-SLM[J]. Optics Express, 2009, 17(13): 10774-10781. doi:10.1364/OE.17.010774
    [32]
    YANG L B, HU L F, LI D Y, et al. Determining the imaging plane of a retinal capillary layer in adaptive optical imaging[J]. Chinese Physics B, 2016, 25(9): 094219. doi:10.1088/1674-1056/25/9/094219
    [33]
    BURNS S A, ELSNER A E, CHUI T Y, et al. In vivoadaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy[J]. Biomedical Optics Express, 2014, 5(3): 961-974. doi:10.1364/BOE.5.000961
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(880) PDF downloads(219) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map