Volume 15Issue 2
Mar. 2022
Turn off MathJax
Article Contents
CHENG Ke, ZHU Bo-yuan, SHU Ling-yun, LIAO Sai, LIANG Meng-ting. Averaged intensity and spectral shift of partially coherent chirped optical coherence vortex lattices in biological tissue turbulence[J]. Chinese Optics, 2022, 15(2): 364-372. doi: 10.37188/CO.EN.2021-0010
Citation: CHENG Ke, ZHU Bo-yuan, SHU Ling-yun, LIAO Sai, LIANG Meng-ting. Averaged intensity and spectral shift of partially coherent chirped optical coherence vortex lattices in biological tissue turbulence[J].Chinese Optics, 2022, 15(2): 364-372.doi:10.37188/CO.EN.2021-0010

Averaged intensity and spectral shift of partially coherent chirped optical coherence vortex lattices in biological tissue turbulence

doi:10.37188/CO.EN.2021-0010
More Information
  • Author Bio:

    CHENG Ke (1979—), Ph.D, Professor, College of Optoelectronic Engineering, Chengdu University of Information Technology. His research interests are focused on propagation and control of High-Power Lasers. E-mail:ck@cuit.edu.cn

  • Corresponding author:ck@cuit.edu.cn
  • Received Date:17 Sep 2021
  • Rev Recd Date:21 Oct 2021
  • Accepted Date:16 Nov 2021
  • Available Online:16 Nov 2021
  • Publish Date:21 Mar 2022
  • In this paper, an averaged intensity and spectral shift of Partially Coherent Chirped Optical Coherence Vortex Lattices (PCCOCVLs) in biological tissue turbulence are investigated with emphasis on optical lattice structures in monochromatic optical fields and spectral rapid transitions in polychromatic optical fields. It is found that the beam profile evolves from annular structures with a vortex core into a periodic array of lobes with a dark zone, and finally presents a Gaussian-like pattern in biological tissue. Although lattice parameter modulates beam profile, it cannot affect the spectral behavior in biological tissue turbulence. The analysis of spectral shift also shows that a smaller distance is beneficial to spectral rapid transition where the transverse coordinate decreases with an increase in chirp parameter and a decrease in pulse duration. The accumulated turbulences over a longer distance can suppress not only spectral transition but also spectral shift. The reduction of spectral shift is accompanied by stronger biological tissue turbulence. The results have possible application in image recognition, medical devices and noninvasive optical diagnoses in biological tissue.

  • loading
  • [1]
    SCHMITT J M, KUMAR G. Turbulent nature of refractive-index variations in biological tissue[J]. Optics Letters, 1996, 21(16): 1310-1312. doi:10.1364/OL.21.001310
    [2]
    GAO W R, KOROTKOVA O. Changes in the state of polarization of a random electromagnetic beam propagating through tissue[J]. Optics Communications, 2007, 270(2): 474-478. doi:10.1016/j.optcom.2006.09.061
    [3]
    LIU X Y, ZHAO D M. The statistical properties of anisotropic electromagnetic beams passing through the biological tissues[J]. Optics Communications, 2012, 285(21-22): 4152-4156. doi:10.1016/j.optcom.2012.06.033
    [4]
    ZHANG H H, CUI ZH W, HAN Y P, et al. Average intensity and beam quality of Hermite-Gaussian correlated Schell-Model beams propagating in turbulent biological tissue[J]. Frontiers in Physics, 2021, 9: 650537. doi:10.3389/fphy.2021.650537
    [5]
    MA L Y, PONOMARENKO S A. Optical coherence gratings and lattices[J]. Optics Letters, 2014, 39(23): 6656-6659. doi:10.1364/OL.39.006656
    [6]
    MA L Y, PONOMARENKO S A. Free-space propagation of optical coherence lattices and periodicity reciprocity[J]. Optics Express, 2015, 23(2): 1848-1856. doi:10.1364/OE.23.001848
    [7]
    CHEN Y H, PONOMARENKO S A, CAI Y J. Experimental generation of optical coherence lattices[J]. Applied Physics Letters, 2016, 109(6): 061107. doi:10.1063/1.4960966
    [8]
    LIU X L, YU J Y, CAI Y J, et al. Propagation of optical coherence lattices in the turbulent atmosphere[J]. Optics Letters, 2016, 41(18): 4182-4185. doi:10.1364/OL.41.004182
    [9]
    LUO B, WU G H, YIN L F, et al. Propagation of optical coherence lattices in oceanic turbulence[J]. Optics Communications, 2018, 425: 80-84. doi:10.1016/j.optcom.2018.04.076
    [10]
    HUANG Y, YUAN Y SH, LIU X L, et al. Propagation of optical coherence vortex lattices in turbulent atmosphere[J]. Applied Sciences, 2018, 8(12): 2476. doi:10.3390/app8122476
    [11]
    YE F, XIE J T, HONG SH H, et al. Propagation properties of a controllable rotating elliptical Gaussian optical coherence lattice in oceanic turbulence[J]. Results in Physics, 2019, 13: 102249. doi:10.1016/j.rinp.2019.102249
    [12]
    HUANG X W, DENG ZH X, SHI X H, et al. Average intensity and beam quality of optical coherence lattices in oceanic turbulence with anisotropy[J]. Optics Express, 2018, 26(4): 4786-4797. doi:10.1364/OE.26.004786
    [13]
    GUO M W, ZHAO D M. Interfering optical coherence lattices by use of a wavefront-folding interferometer[J]. Optics Express, 2017, 25(13): 14351-14358. doi:10.1364/OE.25.014351
    [14]
    LIANG CH H, MI CH K, WANG F, et al. Vector optical coherence lattices generating controllable far-field beam profiles[J]. Optics Express, 2017, 25(9): 9872-9885. doi:10.1364/OE.25.009872
    [15]
    JI X L, ZHANG E T, LÜ B D. Spectral properties of chirped Gaussian pulsed beams propagating through the turbulent atmosphere[J]. Journal of Modern Optics, 2007, 54(4): 541-553. doi:10.1080/09500340600964080
    [16]
    LIU D J, WANG G Q, WANG Y CH. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence[J]. Optics& Laser Technology, 2018, 98: 309-317.
    [17]
    DUAN M L, WU Y G, ZHANG Y M, et al. Coherence properties of a random electromagnetic vortex beam propagating in biological tissues[J]. Journal of Modern Optics, 2019, 66(1): 59-66. doi:10.1080/09500340.2018.1511863
    [18]
    ARPALI S A, ARPALI ç, BAYKAL Y. Bit error rate of a Gaussian beam propagating through biological tissue[J]. Journal of Modern Optics, 2020, 67(4): 340-345. doi:10.1080/09500340.2020.1719226
    [19]
    DUAN M L, TIAN Y N, ZHANG Y M, et al. Influence of biological tissue and spatial correlation on spectral changes of Gaussian-Schell model vortex beam[J]. Optics and Lasers in Engineering, 2020, 134: 106224. doi:10.1016/j.optlaseng.2020.106224
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views(629) PDF downloads(72) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map