Citation: | CHENG Ke, ZHU Bo-yuan, SHU Ling-yun, LIAO Sai, LIANG Meng-ting. Averaged intensity and spectral shift of partially coherent chirped optical coherence vortex lattices in biological tissue turbulence[J].Chinese Optics, 2022, 15(2): 364-372.doi:10.37188/CO.EN.2021-0010 |
[1] |
SCHMITT J M, KUMAR G. Turbulent nature of refractive-index variations in biological tissue[J].
Optics Letters, 1996, 21(16): 1310-1312.
doi:10.1364/OL.21.001310
|
[2] |
GAO W R, KOROTKOVA O. Changes in the state of polarization of a random electromagnetic beam propagating through tissue[J].
Optics Communications, 2007, 270(2): 474-478.
doi:10.1016/j.optcom.2006.09.061
|
[3] |
LIU X Y, ZHAO D M. The statistical properties of anisotropic electromagnetic beams passing through the biological tissues[J].
Optics Communications, 2012, 285(21-22): 4152-4156.
doi:10.1016/j.optcom.2012.06.033
|
[4] |
ZHANG H H, CUI ZH W, HAN Y P,
et al. Average intensity and beam quality of Hermite-Gaussian correlated Schell-Model beams propagating in turbulent biological tissue[J].
Frontiers in Physics, 2021, 9: 650537.
doi:10.3389/fphy.2021.650537
|
[5] |
MA L Y, PONOMARENKO S A. Optical coherence gratings and lattices[J].
Optics Letters, 2014, 39(23): 6656-6659.
doi:10.1364/OL.39.006656
|
[6] |
MA L Y, PONOMARENKO S A. Free-space propagation of optical coherence lattices and periodicity reciprocity[J].
Optics Express, 2015, 23(2): 1848-1856.
doi:10.1364/OE.23.001848
|
[7] |
CHEN Y H, PONOMARENKO S A, CAI Y J. Experimental generation of optical coherence lattices[J].
Applied Physics Letters, 2016, 109(6): 061107.
doi:10.1063/1.4960966
|
[8] |
LIU X L, YU J Y, CAI Y J,
et al. Propagation of optical coherence lattices in the turbulent atmosphere[J].
Optics Letters, 2016, 41(18): 4182-4185.
doi:10.1364/OL.41.004182
|
[9] |
LUO B, WU G H, YIN L F,
et al. Propagation of optical coherence lattices in oceanic turbulence[J].
Optics Communications, 2018, 425: 80-84.
doi:10.1016/j.optcom.2018.04.076
|
[10] |
HUANG Y, YUAN Y SH, LIU X L,
et al. Propagation of optical coherence vortex lattices in turbulent atmosphere[J].
Applied Sciences, 2018, 8(12): 2476.
doi:10.3390/app8122476
|
[11] |
YE F, XIE J T, HONG SH H,
et al. Propagation properties of a controllable rotating elliptical Gaussian optical coherence lattice in oceanic turbulence[J].
Results in Physics, 2019, 13: 102249.
doi:10.1016/j.rinp.2019.102249
|
[12] |
HUANG X W, DENG ZH X, SHI X H,
et al. Average intensity and beam quality of optical coherence lattices in oceanic turbulence with anisotropy[J].
Optics Express, 2018, 26(4): 4786-4797.
doi:10.1364/OE.26.004786
|
[13] |
GUO M W, ZHAO D M. Interfering optical coherence lattices by use of a wavefront-folding interferometer[J].
Optics Express, 2017, 25(13): 14351-14358.
doi:10.1364/OE.25.014351
|
[14] |
LIANG CH H, MI CH K, WANG F,
et al. Vector optical coherence lattices generating controllable far-field beam profiles[J].
Optics Express, 2017, 25(9): 9872-9885.
doi:10.1364/OE.25.009872
|
[15] |
JI X L, ZHANG E T, LÜ B D. Spectral properties of chirped Gaussian pulsed beams propagating through the turbulent atmosphere[J].
Journal of Modern Optics, 2007, 54(4): 541-553.
doi:10.1080/09500340600964080
|
[16] |
LIU D J, WANG G Q, WANG Y CH. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence[J].
Optics&
Laser Technology, 2018, 98: 309-317.
|
[17] |
DUAN M L, WU Y G, ZHANG Y M,
et al. Coherence properties of a random electromagnetic vortex beam propagating in biological tissues[J].
Journal of Modern Optics, 2019, 66(1): 59-66.
doi:10.1080/09500340.2018.1511863
|
[18] |
ARPALI S A, ARPALI ç, BAYKAL Y. Bit error rate of a Gaussian beam propagating through biological tissue[J].
Journal of Modern Optics, 2020, 67(4): 340-345.
doi:10.1080/09500340.2020.1719226
|
[19] |
DUAN M L, TIAN Y N, ZHANG Y M,
et al. Influence of biological tissue and spatial correlation on spectral changes of Gaussian-Schell model vortex beam[J].
Optics and Lasers in Engineering, 2020, 134: 106224.
doi:10.1016/j.optlaseng.2020.106224
|