Volume 5Issue 5
Oct. 2012
Turn off MathJax
Article Contents
CHEN Yong-yi, TONG Cun-zhu, QIN Li, WANG Li-jun, ZHANG Jin-long. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
Citation: CHEN Yong-yi, TONG Cun-zhu, QIN Li, WANG Li-jun, ZHANG Jin-long. Progress in surface plasmon polariton nano-laser technologies and applications[J].Chinese Optics, 2012, 5(5): 453-463.doi:10.3788/CO.20120505.0453

Progress in surface plasmon polariton nano-laser technologies and applications

doi:10.3788/CO.20120505.0453
  • Received Date:12 Jun 2012
  • Rev Recd Date:13 Aug 2012
  • Publish Date:10 Oct 2012
  • Conventional semiconductor lasers suffer from the scale of the diffraction limit due to the light to be confined by the optical feedback systems. Therefore, the scales of the lasers cannot be miniaturized because their cavities cannot be less than the half of the lasing wavelength. However, lasers based on the Surface Plasmon Polaritons(SPPs) can operate at a deep sub-wavelength, even nanometer scale. Moreover, the development of modern nanofabrication techniques provides the fabrication conditions for micro- or even nanometer scale lasers. This paper reviews the progress in nano-lasers based on SPPs that have been demonstrated recently. It describes the basic principles of the SPPs and gives structures and characteristics for several kinds of nanometer scale lasers. Then, it points out that the major defects of the nanometer scale lasers currently are focused on higher polariton losses and the difficulties in fabrication and electronic pumping technologies mentioned above. Finally, the paper considers the research and application prospects of the nanometer scale lasers based on the SPPs.

  • loading
  • [1] SCHAWLOW A L,TOWNES C H. Infrared and optical masers[J]. Phy. Rev.,1958,112:1940-1949. [2] WANG Z B,JOSEPH N,LI L, et al.. A review of optical near-fields in particle/tip-assisted laser nanofabrication[J]. Mechanical Eng. Sci.,2010,224:1113-1125. [3] GUO W,WANG Z B,LI L, et al.. Near-field laser parallel nanofabrication of arbitrary-shaped patterns[J]. Appl. Phys. Lett.,2007,90:243101. [4] SCHULLER J A,BARNARD E S,CAI W SH, et al.. Plasmonics for extreme light concentration and manipulation[J]. Nature Mate.,2010,9:193-204. [5] BARNARD D K,BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics,2010,4:83-91. [6] ANKER J N,HALL W P,LYANDRES O, et al.. Biosensing with plasmonic nanosensors[J]. Nature Mater.,2008,7:442-453. [7] DIONNE J A,DIEST K,SWEATLOCK L A, et al.. Ametal-oxide-Si field effect plasmonic modulator[J]. Nano Lett.,2009,9:897-902. [8] ZIJLSTRA P,CHON J W M,GU M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature,2009,459:410-413. [9] CHALLENER W A,PENG CH B,ITAGI A V, et al.. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer[J]. Nature Photonics,2009,3:220-224. [10] 雷建国,刘天航,林景全,等. 表面等离子体 的若干新应用[J]. 中国光学与应用光学,2010,3(5):432-439. LEI J G,LIU T H,LIN J Q, et al.. New applications of surface plasmon polaritons[J]. Chinese J. Opt. Appl. Opt.,2010,3(5):432-439.(in Chinese) [11] LIU JUAN,WANG Y T,XU L W, et al.. Contribution of surface plasmon polaritons to extraordinary optical transmission through metallic nanoslit[J]. Chinese J. Opt. Appl. Opt..,2010,3(1):33-37. [12] STIPE B C,STRAND T C,POON C C, et al.. Magnetic recording at 1: 5 Pb m-2 using an integrated plasmonic antenna[J]. Nature Photonics,2010,4:484-488. [13] BARNES W L,DEREUX A,EBBESEN T W S. Surface plasmon subwavelength optics[J]. Nature,2003,424:824-830. [14] BOZHEVOLNYI S I,VOLKOV V S,DEVAUX E, et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature,2006,440:508-511. [15] AKIMOV A V,MUKHERJEE A,YU C L, et al.. Generation of single optical plasmons in metallic nanowires coupled to quantum dots[J]. Nature,2007,450:402-406. [16] LIEBERG B,Nylander C,NYLANDER M I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors and Actuators,1983,4:299-304. [17] ATWATER A H. The promise of plasmonics[J]. Sci. Am.,2007,296(4):56-63. [18] PAN L,PARK Y,XIONG Y, et al.. Maskless plasmonic lithography at 22 nm resolution[J]. Scientific Reports,2011,1:175 [19] BERGMAN D J,STOCKMAN M I. Surface plasmon amplification by stimulated emission of radiation:quantum generation of coherent surface plasmons in nanosystems[J]. Phys. Rev. Lett.,2003,90:027402 [20] MAISER S A. Plasmonics:Fundamentals and Aplications[M]. Berlin:Springer-verlag,2006. [21] BRONGERSMA M L,KIK P G. Surface Plasmon Nanophotonics[M]. Berlin:Springer-verlag,2007. [22] RAETHER H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M]. Berlin:Springer-verlag,1988. [23] 顾本源.表面等离子体激元亚波长光学原理和新颖效应[J]. 物理,2007,36(4): 280-287. GU B Y. Surface plasmon subwavelength optics:principles and novel effects[J]. Physics,2007,36(4):280-287.(in Chinese) [24] OULTON R F,PILE D F P,LIU Y, et al.. Scattering of surface plasmon polaritons at abrupt surface interfaces:implications for nanoscale cavities[J]. Phys. Rev. B,2007,76:035408. [25] OZBAY E. Plasmonics:merging photonics and electronics at nanoscale dimensions[J]. Science,2006,311:189-193. [26] CONWAY J A,SAHNI S,SZKOPEK T. Plasmonic interconnects versus conventional interconnects:a comparison of latency,crosstalk and energy costs[J]. Opt. Express,2007,15(8):4474-4484. [27] JACOB Z,SHALAEV V M. Plasmonics goes quantum[J]. Science,2011,334:463-464. [28] KRASAVIN A V,ZAYATS A V. Silicon-based plasmonic waveguides[J]. Opt. Express,2010,18:11791-11799 [29] CHANG S W,LIN T R,CHUANG S L. Theory of plasmonic fabry-perot nanolasers[J]. Opt. Express,2010,18(14):15039-15053. [30] CHANG S W,CHUANG S L. Fundamental formulation for plasmonic nanolasers[J]. IEEE J. Quantum Elect.,2009,45(8):1014-1023. [31] STOCKMAN M I. Spasers explained[J]. Nature Photonics,2008,2: 327-329. [32] FORD G W,WEBER W H. Electromagnetic interactions of molecules with metal surfaces[J]. Physics Reports(Review Section for Physics Letters),1984,113(4):195-287. [33] LEON I D,BERINI P. Amplification of long-range surface plasmons by a dipolar gain medium[J]. Nature Photonics,2010,4:382-387. [34] ZHELUDEV N I,PROSVIRNIN S L,PAPASIMAKIS N, et al.. Lasing spaser[J]. Nature Photonics,2008,2:351-354. [35] ZHANG S,GENOV D A,WANG Y, et al.. Plasmon-induced transparency in metamaterials[J]. Phys. Rev. Lett.,2008,101:047401. [36] LIU M Z,LEE T W,GRAY S K, et al.. Excitation of dark plasmons in metal nanoparticles by a localized emitter[J]. Phys. Rev. Lett.,2009,102:107401. [37] KOH A L,BAO K,KHAN I, et al.. Electron energy-loss spectroscopy(EELS) of surface plasmons in single silver nanoparticles and dimers:influence of beam damage and mapping of dark modes[J]. ACS Nano,2009,3:3015-3022. [38] CHU M W,MYROSHNYCHENKO V,CHEN C H, et al..Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam[J]. Nano Lett.,2009,9(1):399-404. [39] KLIMOV V,GUO G Y. Bright and dark plasmon modes in three nanocylinder cluster[J]. J. Phys. Chem. C,2010,114(51):22398-22405. [40] DONG Z G,LIU H,LI T, et al.. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars[J]. Opt. Express,2010,18:18229-18234. [41] BIRIS C G,PANOIU N C. Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles:applications to near-infrared plasmonic sensing[J]. Nanotechnology,2011,22:235502. [42] FEDOTOV V A,ROSE M,PROSVIRNIN S L, et al.. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Phys. Rev. Lett.,2007,99:147401. [43] 杨欢,李飞,罗先刚,等. 基于复合纳米结构的局域表面等离子体光学传感器[J]. 光学与光电技术,2010,8(2):80-83. YANG H,LI F,LUO X G, et al..Localized surface plasmomic biosensor based on composite nanostructures[J]. Optics& Optoelectronic Technology,2010,8(2):80-83.(in Chinese) [44] NOGINOV M A,ZHU G,BELGRAVE A M, et al.. Demonstration of a spaser-based nanolaser[J]. Nature,2009,460:1110-1112. [45] LAWANDY N M. Localized surface plasmon singularities in amplifying media[J]. Appl. Phys. Lett.,2004,85:5040. [46] LAWANDY N M. Interactions of charged particles on surfaces[J]. Appl. Phys. Lett.,2009,95:234101. [47] GHANNAM T. Dipole nano-laser: the effect of an external electric field[J]. J. Phys. B:At. Mol. Opt. Phys.,2010,43:155505-155510. [48] NOGINOV M A,ZHU G,BAHOURA M, et al.. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium[J]. Opt. Lett.,2006,31:3022-3024. [49] NOGINOV M A,ZHU G,BAHOURA M, et al.. The effect of gain and absorption on surface plasmons in metal nanoparticles[J]. Appl. Phys. B,2007,86:455-460. [50] OULTON R F,SORGER V J,ZENTGRAF T, et al.. Plasmon lasers at deep subwavelength scale[J]. Nature,2009,461:629-632. [51] OULTON R F,SORGER V J,GENOV D A, et al.. A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation[J]. Nature Photonics,2008,2:495-500. [52] LIN ZH. Modal properties of hybrid plasmonic waveguides for nanolaser applications[J]. IEEE Photonics Technol. Lett.,2010,22(8):535-537. [53] HILL M T,OEI Y S,SMALBRUGGE B, et al.. Lasing in metallic-coated nanocavities[J]. Nature Photonics,2007,1:589-594. [54] NEZHAD M P,SIMIC A,BONDAENKO O, et al.. Room-temperature subwavelength metallo-dielectric lasers[J]. Nature Photonics,2010,4:395-399. [55] KOLLER D M,HOHENAU A,DITLBACHER H, et al.. Organic plasmon-emitting diode[J]. Nature Photonics,2008,2:684-687. [56] WALTERS R J,LOON R V A VAN,BRUNETS I, et al.. A silicon-based electrical source of surface plasmon polaritons[J]. Nature Mater,2009,9:21-25. [57] WALTHER C,SCALARI G,AMANTI M I, et al.. Microcavity laser oscillating in a circuit-based resonator[J]. Science,2010,327(5972):1495-1497. [58] HILL M T,MARELL M,LEONG E S P, et al.. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides[J]. Opt.Express,2009,17(13):11107-11112. [59] AKAHANE Y,ASANO T,SONG B S, et al.. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature,2003,425:994. [60] SANVITTO D, DARAEI A, TAHRAOUI A, et al.. Observation of ultrahigh quality factor in a semiconductor microcavity[J]. Appl. Phys. Lett.,2005,86:191109. [61] MA R M,RUPERT F,OULTON R F, et al.. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection[J]. Nature Materials,2010,10:110-113. [62] ARAKAWA E T,WILLIAMS M W,HAMM R N, et al.. Effect of damping on surface plasmon dispersion[J]. Phys. Rev. Lett.,1973,3:1127-1129. [63] OKAMOTO T,H'DHILI F,KAWATA S. Towards plasmonic band gap laser[J]. Appl. Phys. Lett.,2004,85:3968. [64] WINTER G,WEDGE S,BARNES W L. Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?[J]. New J. Phys.,2006,8:125. [65] ALAM M Z,MEIER J,AITCHISON J S, et al.. Gain assisted surface plasmon polariton in quantum wells structures[J]. Opt. Express,2007,15:176-182. [66] de LEON I,BERINI P P. Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media[J]. Phys. Rev. B,2008,78:161401. [67] GENOV D A,AMBATI M,ZHANG X. Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach[J]. Phys. Rev. B,2008,77:115425.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3778) PDF downloads(1260) Cited by()
    Proportional views

    /

      Return
      Return
        Baidu
        map