[1] HUANG X Q, TANG S H, MU X L,et al.. Freestanding palladium nanosheets with plasmonic and catalytic properties[J].Nat. Nanotechnol, 2011, 6:28-32. [2] KABASHIN A V, EVANS P, PASTKOVSKY S,et al.. Plasmonic nanorod metamaterials for biosensing, plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J].Nat. Mater., 2009, 8:867-871. [3] LI H B, LI F Y, HAN C P,et al.. Highly sensitive and selective tryptophan colorimetric sensor based on 4, 4-bipyridine-functionalized silver nanoparticles[J].Sens Actuat B Chem., 2009, 145:194. [4] TIAN Y, SHI X, LU C Q,et al.. Charge separation in solid-state gold nanoparticles-sensitized photovoltaic cell[J].Electrochem. Commun., 2009, 11:1603-1605. [5] CUEVAS-MUNIZ F M, GUERRA-BALCAZAR M, CASTANEDA F,et al.. Performance of Au and AuAg nanoparticles supported on Vulcan in a glucose laminar membraneless microfuel cell[J].J. Power Sources, 2011, 196:5853. [6] LU Y Z, WANG Y C, CHEN W. Silver nanorods for oxygen reduction:strong effects of protecting ligand on the electrocatalytic activity[J].J. Power Sources, 2011, 196:3033. [7] ZHOU H Q, QIU C Y, YU F,et al.. Thickness-dependent morphologies and surface-enhanced raman scattering of Ag deposited on n-Layer graphenes[J].J. Phys. Chem. C, 2011, 115:11348-11354. [8] NIU B J, WU L L, TANG W,et al.. Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance[J].Cry. Steng. Comm., 2011, 13:3678-3681. [9] SU Y H, TU S L, TSENG S W,et al.. Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins[J].Nanoscale, 2010, 2:2639-2646. [10] BABA A, AOKI N, SHINBO K,et al.. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells[J].ACS Appl. Mater. Interf., 2011, 3:2080-2084. [11] FURUBE A, DU L, HARA K,et al.. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2nanoparticles[J].J. Am. Chem. Soc., 2007, 129:14852. [12] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J].Nat. Mater., 2011, 10:911. [13] TIAN Y, TATSUMA T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2[J].Chem. Commun.(Camb), 2004(16):1810-1811. [14] TIAN Y, TATSUMA T. Mechanisms and applications of plasmon-induced charge separation at TiO2films loaded with gold nanoparticles[J].J Am Chem Soc, 2005, 127:7632. [15] Two highly dispersed metallic oxides by the aerosil process[J].Degussa Technical Bulletin, 1990(56):3-21. [16] ZHU M, AIKENS C M, HOLLANDER F J,et al.. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties[J].J. Am. Chem. Soc., 2008, 130:5883. [17] FURUBE A, DU L, HARA K,et al.. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2nanoparticles[J].J. Am. Chem. Soc., 2007, 129:14852. [18] MCFARLAND E W, TANG J. A photovoltaic device structure based on internal electron emission[J].Nature, 2003, 421:616. [19] BISQUERT J, CAHEN D, HODES G,et al.. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells[J].J. Phys. Chem. B, 2004, 108:8106. [20] WANG Q, ITO S, GRATZEL M,et al.. Characteristics of high efficiency dye-sensitized solar cells[J].J. Phys. Chem. B, 2006, 110:25210. [21] SMESTAD G P.Optoelectronics of Solar Cells[M]. Washington, DC:SPIE, 2002. [22] WURFEL P. Physics of Solar Cells:From Principles to New Concepts [M]. Weinhein:Wiley-VCH Verlag GmbH & Co. KGaA, 2005.