Citation: | GAO Feng, QIN Li, CHEN Yong-yi, JIA Peng, CHEN Chao, LIANG Lei, CHEN Hong, ZHANG Xing, NING Yong-qiang. Reseach progress of bent waveguide and its applications[J].Chinese Optics, 2017, 10(2): 176-193.doi:10.3788/CO.20171002.0176 |
[1] |
CHEN R, NG K W, KO W S,
et al.. Nanophotonic integrated circuits from nanoresonators grown on silicon[J].
Nature Communications, 2014, 5:1-9.
https://www.researchgate.net/publication/263708999_Nanophotonic_integrated_circuits_from_nanoresonators_grown_on_silicon
|
[2] |
DAI D, WU H, GUAN X. SOI (Silicon-on-insulator)-compatible hybrid nanoplasmonics:waveguiding, polarization-handling, and thermal-tuning[J].
Nanophotonics and Micro/Nano Optics Ⅱ, 2014:9277.
|
[3] |
DAI D X, BAUTERS J, BOWERS J E. Passive technologies for future large-scale photonic integrated circuits on silicon:polarization handling, light non-reciprocity and loss reduction[J].
Light-Sci. Appl., 2012, 1:12.
doi:10.1038/lsa.2012.12
|
[4] |
BOEUF F, CREMER S, VULLIET N,
et al.. A multi-wavelength 3D-compatible silicon photonics platform on 300 mm SOI wafers for 25 Gb/s applications[C]. IEDM, 2013:13.13.11-13.13.14.
|
[5] |
WELCH DF, KISH FA, MELLE S,
et al.. Large-Scale InP photonic integrated circuits:enabling efficient scaling of optical transport networks[J].
IEEE J. Selected Topics in Quantum Electronics, 2007, 13(1):22-31.
doi:10.1109/JSTQE.2006.890068
|
[6] |
NICHOLES S C, MASANOVIC M L, JEVREMOVIC B,
et al.. An 88 InP Monolithic Tunable Optical Router (MOTOR) packet forwarding chip[J].
J. Lightwave Technology, 2010, 28(4):641-650.
doi:10.1109/JLT.2009.2030145
|
[7] |
TAYLOR H F. Power loss at directional change in dielectric waveguides[J].
Applied Optics, 1974, 13(3):642-647.
doi:10.1364/AO.13.000642
|
[8] |
LADOUCEUR F, LABEYE P. A new general-approach to optical wave-guide path design[J].
J. Lightwave Technology, 1995, 13(3):481-492.
doi:10.1109/50.372446
|
[9] |
SUBBARAMAN H, XU X, HOSSEINI A,
et al.. Recent advances in silicon-based passive and active optical interconnects[J].
Optics Express, 2015, 23(3):2487-2510.
doi:10.1364/OE.23.002487
|
[10] |
SMIT M K. InP photonic integrated circuits[J].
IEEE J. Selected Topics in Quantum Electronics, 2002, 16(5):1113-1125.
|
[11] |
KAWACHI M. Recent progress in silica-based planar lightwave circuits on silicon[J].
Optoelectronics, IEE Proceedings, 1996, 143(5):257-262.
doi:10.1049/ip-opt:19960493
|
[12] |
ZHANG X, HOSSEINI A, LIN X,
et al.. Polymer-based hybrid integrated photonic devices for silicon on-chip modulation and board-level optical interconnects[J].
IEEE J. Selected Topics in Quantum Electronics, 2014, 19(6):3401115.
http://www.oalib.com/paper/3579041
|
[13] |
LEE H, CHEN T, LI J,
et al.. Ultra-low-loss optical delay line on a silicon chip[J].
Nature Communications, 2012, 3:7.
|
[14] |
BAUTERS J F, HECK M J R, JOHN D,
et al.. Ultra-low-loss high-aspect-ratio Si
3N
4waveguides[J].
Optics Express, 2011, 19(4):3163-3174.
doi:10.1364/OE.19.003163
|
[15] |
BAUTERS J F, HECK M J, JOHN D D,
et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding[J].
Optics Express, 2011, 19(24):24090-24101.
doi:10.1364/OE.19.024090
|
[16] |
ADAR R, SERBIN M R, MIZRAHI V. Less than 1 dB per meter propagation loss of silica wave-guides measured using a ring resonator[J].
J. Lightwave Technology, 1994, 12(8):1369-1372.
doi:10.1109/50.317523
|
[17] |
KOBAYASHI N, SATO K, NAMIWAKA M,
et al.. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers[J].
J. Lightwave Technology, 2015, 33(6):1241-1246.
doi:10.1109/JLT.2014.2385106
|
[18] |
SOREF R A, LARENZO J. All-silicon active and passive guided-wave components for
λ=1.3 and 1.6μm[J].
IEEE J. Quantum Electronics, 1986, 22(6):873-879.
doi:10.1109/JQE.1986.1073057
|
[19] |
SOREF R A. Silicon-based optoelectronics[J].
Proceedings of the IEEE, 1994, 23(12):1687-1706.
|
[20] |
JALALI B, TRINH P D, YEGNANARAYANAN S,
et al.. Guided-wave optics in silicon-on-insulator technology[J].
IEE Proceedings-optoelectronics, 1996, 143(5):307-311.
doi:10.1049/ip-opt:19960675
|
[21] |
JALALI B, YEGNANARAYANAN S, YOON T,
et al.. Advances in silicon-on-insulator optoelectronics[J].
IEEE J. Selected Topics in Quantum Electronics, 1998, 4(6):938-947.
doi:10.1109/2944.736081
|
[22] |
LIBERTINO S, COFFA S, SAGGIO M. Design and fabrication of integrated Si-based optoelectronic devices[J].
Materials Science in Semiconductor Processing, 2000, 3(5):375-381.
https://www.researchgate.net/publication/222689342_Design_and_fabrication_of_integrated_Si-based_optoelectronic_devices
|
[23] |
VLASOV Y A, MCNAB S J. Losses in single-mode silicon-on-insulator strip waveguides and bends[J].
Optics Express, 2004, 12(8):1622-1631.
doi:10.1364/OPEX.12.001622
|
[24] |
YONGBO T, HUI-WEN C, SIDDHARTH J,
et al.. 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator[J].
Optics Express, 2011, 19(7):5811-5816.
doi:10.1364/OE.19.005811
|
[25] |
QIANFAN X, BRADLEY S, SAMEER P,
et al. Micrometre-scale silicon electro-optic modulator[J].
Nature, 2005, 435(7040):325-327.
doi:10.1038/nature03569
|
[26] |
JONES R, LIU A S, RONG H S,
et al.. Lossless optical modulation in a silicon waveguide using stimulated Raman scattering[J].
Optics Express, 2005, 13(5):1716-1723.
doi:10.1364/OPEX.13.001716
|
[27] |
LIU A S, JONES R, LIAO L,
et al.. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J].
Nature, 2004, 427(6975):615-618.
doi:10.1038/nature02310
|
[28] |
RICKMAN A G, REED G T, NAMAVAR F. Silicon-on-insulator optical rib waveguide loss and mode characteristics[J].
J. Lightwave Technology, 1994, 12(10):1771-1776.
doi:10.1109/50.337489
|
[29] |
MELLONI A, CARNIEL F, COSTA R,
et al. Determination of bend mode characteristics in dielectric waveguides[J].
J. Lightwave Technology, 2001, 19(4):571-577.
doi:10.1109/50.920856
|
[30] |
SINGH A. Influence of carrier transport on Raman amplification in silicon waveguides[J].
Optics Express, 2010, 18(12):12569-12580.
doi:10.1364/OE.18.012569
|
[31] |
RICARDO C, RAGHUNATHAN V, DIMITROPOULOS D,
et al. Influence of nonlinear absorption on Raman amplification in Silicon waveguides[J].
Optics Express, 2004, 12(12):2774-2780.
doi:10.1364/OPEX.12.002774
|
[32] |
DIMITROPOULOS D, FATHPOUR S, JALALI B. Limitations of active carrier removal in silicon Raman amplifiers and lasers[J].
Applied Physics Letters, 2005, 87(26):261108-3.
doi:10.1063/1.2155071
|
[33] |
LIU Y, TSANG H K. Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides[J].
Optics Letters, 2006, 31(11):1714-1716.
doi:10.1364/OL.31.001714
|
[34] |
HEWITT P D, REED G T. Improving the response of optical phase modulators in SOI by computer simulation[J].
J. Lightwave Technology, 2000, 18(3):443-450.
doi:10.1109/50.827519
|
[35] |
GRILLOT F, VIVIEN L, CASSAN E,
et al.. Influence of waveguide geometry on scattering loss effects in submicron strip silicon-on-insulator waveguides[J].
IET Optoelectronics, 2008, 2(1):1-5.
doi:10.1049/iet-opt:20070001
|
[36] |
PAYNE F P, LACEY J P R. A theoretical analysis of scattering loss from planar optical waveguides[J].
Optical&
Quantum Electronics, 1994, 26(10):977-986.
|
[37] |
PAFCHEK R, TUMMIDI R, LI J,
et al.. Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation[J].
Applied Optics, 2009, 48(5):958-963.
doi:10.1364/AO.48.000958
|
[38] |
LEE K K, LIM D R, KIMERLING L C,
et al.. Fabrication of ultralow-loss Si/SiO
2waveguides by roughness reduction[J].
Optics Letters, 2001, 26(23):1888-1890.
doi:10.1364/OL.26.001888
|
[39] |
LIU H C, LIN Y H, HSU W. Sidewall roughness control in advanced silicon etch process[J].
Microsystem Technologies, 2003, 10(1):29-34.
doi:10.1007/s00542-003-0309-8
|
[40] |
GAO F, WANG Y, CAO G,
et al.. Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides[J].
Applied Physics B, 2005, 81(5):691-694.
doi:10.1007/s00340-005-1951-x
|
[41] |
CHABLOZ M, SAKAI Y, MATSUURA T,
et al. Improvement of sidewall roughness in deep silicon etching[J].
Microsystem Technologies, 2000, 6(3):86-89.
doi:10.1007/s005420050003
|
[42] |
SNYDER A W. Radiation losses due to variations of radius on dielectric or optical fibers[J].
IEEE Transactions on Microwave Theory and Techniques, 1970, 18(9):608-614.
doi:10.1109/TMTT.1970.1127296
|
[43] |
LEWIN L. Radiation from curved dielectric slabs and fibers[J].
IEEE Transactions on Microwave Theory&
Techniques, 1974, 22(7):718-727.
|
[44] |
KUESTER E F, CHANG D C. Surface-wave radiation loss from curved dielectric slabs and fibers[J].
IEEE J. Quantum Electronics, 1975, 11(11):903-907.
doi:10.1109/JQE.1975.1068548
|
[45] |
MARCUSE D. Curvature loss formula for optical fibers[J].
J. Optical Society of America, 1976, 66(3):216-220.
doi:10.1364/JOSA.66.000216
|
[46] |
MIYAGI M, NISHIDA S. Bending losses of dielectric rectangular waveguides for integrated optics[J].
J. Optical Society of America, 1978, 68(68):316-319.
https://www.researchgate.net/publication/243755215_Bending_losses_of_dielectric_rectangular_waveguides_for_integrated_optics
|
[47] |
WHITE I A. Radiation from bends in optical waveguides:the volume-current method[J].
IEEE J. Microwaves, 1979, 3(5):186-188.
doi:10.1049/ij-moa.1979.0043
|
[48] |
COLLIN R.
Field Theory of Guided Waves[M]. McGraw-Hill, 1960.
|
[49] |
BRIMONT A, HU X, CUEFF S,
et al.. Low-loss and compact silicon rib waveguide bends[J].
IEEE Photonics Technology Letters, 2016, 28(3):299-302.
doi:10.1109/LPT.2015.2495230
|
[50] |
MITOMI O, KASAYA K, MIYAZAWA H. Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling[J].
IEEE J. Quantum Electronics, 1994, 30(8):1787-1793.
doi:10.1109/3.301643
|
[51] |
ALMEIDA V R, PANEPUCCI R R, MICHAL L. Nanotaper for compact mode conversion[J].
Optics Letters, 2003, 28(15):1302-1304.
doi:10.1364/OL.28.001302
|
[52] |
MARCATILI E A J. Bends in optical dielectric guides[J].
Bell System Technical Journal, 1969, 48(7):2103-2132.
doi:10.1002/bltj.1969.48.issue-7
|
[53] |
HEIBLUM M, HARRIS J H. Analysis of curved optical-waveguides by conformal transformation[J].
IEEE J. Quantum Electronics, 1975, 11(2):75-83.
doi:10.1109/JQE.1975.1068563
|
[54] |
CHILWELL J, HODGKINSON I. Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides[J].
J. Optical Society of America A Optics&
Image Science, 1984, 1(7):742-753.
https://www.researchgate.net/publication/239007421_Thin-films_field-transfer_matrix_theory_of_planar_multilayer_waveguides_and_reflection_from_prism-loaded_waveguides
|
[55] |
THYAGARAJAN K, RAMADAS M R, SHENOY M R. Beat-length measurement of birefringent optical fibers[J].
Optics Letters, 1987, 12(11):935-937.
doi:10.1364/OL.12.000935
|
[56] |
DAI D X, SAILING H. Analysis of characteristics of bent rib waveguides[J].
J. Optical Society of America A Optics Image Science&
Vision, 2004, 21(1):113-121.
|
[57] |
YAMAMOTO T, KOSHIBA M. Numerical analysis of curvature loss in optical waveguides by the finite-element method[J].
J. Lightwave Technology, 1993, 11(10):1579-1583.
doi:10.1109/50.249899
|
[58] |
GU J S, BESSE P A, MELCHIOR H. Method of lines for the analysis of the propagation characteristics of curved optical rib waveguides[J].
IEEE J. Quantum Electronics, 1991, 27(3):531-537.
|
[59] |
FENG N N, ZHOU G R, XU C,
et al.. Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers[J].
J. Lightwave Technology, 2002, 20(11):1976-1980.
doi:10.1109/JLT.2002.806333
|
[60] |
DAI D X, SHI Y C. Deeply etched SiO
2ridge waveguide for sharp bends[J].
J. Lightwave Technology, 2006, 24(12):5019-5024.
doi:10.1109/JLT.2006.885243
|
[61] |
HU Z, LU Y Y. Computing optimal waveguide bends with constant width[J].
J. Lightwave Technology, 2007, 25(10):3161-3167.
doi:10.1109/JLT.2007.904033
|
[62] |
CHERCHI M, YLINEN S, HARJANNE M,
et al.. Low-loss spiral waveguides with ultra-small footprint on a micron scale SOI platform[J].
Silicon Photonics Ix, 2014, 8990.
|
[63] |
ZHUANG L M, MARPAUNG D, BURLA M,
et al.. Low-loss, high-index-contrast Si
3N
4/SiO
2optical waveguides for optical delay lines in microwave photonics signal processing[J].
Optics Express, 2011, 19(23):23162-23170.
doi:10.1364/OE.19.023162
|
[64] |
HU R, DAI D, HE S. A small polymeric ridge waveguide with a high index contrast[J].
J. Lightwave Technology, 2008, 26(13-16):1964-1968.
https://www.researchgate.net/publication/3244617_A_Small_Polymeric_Ridge_Waveguide_With_a_High_Index_Contrast
|
[65] |
FISCHER U, ZINKE T, KROPP J R,
et al.. 0.1 dB/cm waveguide losses in single-mode SOI rib waveguides[J].
IEEE Photonics Technology Letters, 1996, 8(5):647-648.
doi:10.1109/68.491567
|
[66] |
TANG Y Z, WANG W H, LI T,
et al. Integrated waveguide turning mirror in silicon-on-insulator[J].
Photonics Technology Letters IEEE, 2002, 14(1):68-70.
doi:10.1109/68.974164
|
[67] |
CHERCHI M, YLINEN S, HARJANNE M,
et al.. Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform[J].
Optics Express, 2013, 21(15):17814-17823.
doi:10.1364/OE.21.017814
|
[68] |
ERIC D, FENGNIAN X, LAURENT S,
et al.. Group index and group velocity dispersion in silicon-on-insulator photonic wires[J].
Optics Express, 2006, 14(9):3853-3863.
doi:10.1364/OE.14.003853
|
[69] |
MUSA S, BORREMAN A, KOK A A M,
et al.. Experimental study of bent multimode optical waveguides[J].
Annals of Surgery,1984, 200(2):153-158.
doi:10.1097/00000658-198408000-00006
|
[70] |
HARJANNE M, AALTO T. Design of tight bends in silicon-on-insulator ridge waveguides[J].
Physica Scripta, 2004, T114:209-212.
doi:10.1088/0031-8949/2004/T114/053
|
[71] |
AALTO T, CHERCHI M, HARJANNE M,
et al.. Launching of multi-project wafer runs in ePIXfab with micron-scale silicon rib waveguide technology[J].
Silicon Photonics Ⅸ, 2014, 8990.
|
[72] |
SOLEHMAINEN K, AALTO T, DEKKER J,
et al. Development of multi-step processing in silicon-on-insulator for optical waveguide applications[J].
J. Optics a-Pure and Applied Optics, 2006, 8(7):S455-S460.
doi:10.1088/1464-4258/8/7/S22
|
[73] |
SOREF R A, SCHMIDTCHEN J, PETERMANN K. Large single-mode rib waveguides in GeSi-Si and Si-on-SiO
2[J].
Quantum Electronics IEEE J., 1991, 27(8):1971-1974.
doi:10.1109/3.83406
|
[74] |
DULLO F T, TINGUELY J C, SOLBO S A,
et al.. Single-mode limit and bending losses for shallow rib Si
3N
4waveguides[J].
IEEE Photonics J., 2015, 7(1):2700511-10.
https://www.researchgate.net/profile/Stian_Solbo/publication/273166722_Single-Mode_Limit_and_Bending_Losses_for_Shallow_Rib_Si3N4_Waveguides/links/552cdea60cf2e089a3acfc02.pdf?origin=publication_detail
|
[75] |
DAY I E, EVANS I, KNIGHTS A,
et al.. Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators[C]. Optical Fiber Communications Conference, 2003. OFC 2003, 2003:249-251.
|
[76] |
ANITA S, THOMAS D, JANUSZ M,
et al.. Fabrication and characterization of three-dimensional silicon tapers[J].
Optics Express, 2003, 11(26):3555-3561.
doi:10.1364/OE.11.003555
|
[77] |
SMIT M K, PENNINGS E C M, BLOK B. Normalized approach to the design of low-loss optical waveguide bends[J].
J. Lightwave Technology, 1993, 11(11):1737-1742.
doi:10.1109/50.251169
|
[78] |
NGUYEN T G, TUMMIDI R S, KOCH T L,
et al.. Lateral leakage of TM-like mode in thin-ridge silicon-on-insulator bent waveguides and ring resonators[J].
Optics Express, 2010, 18(7):7243-7252.
doi:10.1364/OE.18.007243
|
[79] |
ZHANG X M, HARRISON M, HARKER A,
et al.. Serpentine low loss trapezoidal silica waveguides on silicon[J].
Optics Express, 2012, 20(20):22298-22307.
doi:10.1364/OE.20.022298
|
[80] |
MANOLATOU C, JOHNSON S G, FAN S,
et al. High-density integrated optics[J].
J. Lightwave Technology, 1999, 17(9):1682-1692.
doi:10.1109/50.788575
|
[81] |
HOCHBERG M, BAEHRJONES T. Towards fabless silicon photonics[J].
Nature Photonics, 2010, 4(8):492-494.
doi:10.1038/nphoton.2010.172
|
[82] |
PO D, WEI Q, HONG L,
et al.. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators[J].
Optics Express, 2010, 18(10):9852-9858.
doi:10.1364/OE.18.009852
|
[83] |
NEUMANN E G. Curved Dielectric Optical Waveguide with Reduced Transition Losses[J].
Microwaves Antennas&
Propagation, 1982, 129(5):278-280.
|
[84] |
SMIT M K, PENNINGS E C M, BLOK H. A normalized approach to the design of low-loss optical wave-guide bends[J].
J. Lightwave Technology, 1993, 11(11):1737-1742.
doi:10.1109/50.251169
|
[85] |
PENNINGS E C M. Bends in optical ridge waveguides:modeling and experiments[D]. Netherland:Delft University of Technology, 1990.
|
[86] |
FAN G, SANG W, LIU X,
et al.. Silicon waveguide racetrack resonators with 1.5μm radius using junction offsets[J].
Microwave&
Optical Technology Letters, 2012, 54(6):1470-1471.
|
[87] |
CHEN T, LEE H, LI J,
et al. A general design algorithm for low optical loss adiabatic connections in waveguides[J].
Optics Express, 2012, 20(20):22819-22829.
doi:10.1364/OE.20.022819
|
[88] |
CAI D P, LU J H, CHEN C C,
et al. High Q-factor microring resonator wrapped by the curved waveguide[J].
Scientific Reports, 2015, 5.
https://www.researchgate.net/publication/277084453_High_Q-factor_microring_resonator_wrapped_by_the_curved_waveguide
|
[89] |
LAI C H, CHANG T, YEH Y S. Characteristics of bent terahertz antiresonant reflecting pipe waveguides[J].
Optics Express, 2014, 22(7):8460-8472.
doi:10.1364/OE.22.008460
|
[90] |
MELLONI A, MONGUZZI P, COSTA R,
et al.. Design of curved waveguides:the matched bend[J].
J. Optical Society of America a-Optics Image Science and Vision, 2003, 20(1):130-137.
doi:10.1364/JOSAA.20.000130
|
[91] |
YUAN W, HALL D C. A General Scaling Rule for Matched Bend Waveguides[J].
J. Lightwave Technology, 2011, 29(24):3786-3796.
doi:10.1109/JLT.2011.2174335
|
[92] |
YUAN W, SEIBERT C S, HALL D C. Single-facet teardrop laser with matched-bends design[J].
IEEE J. Selected Topics in Quantum Electronics, 2011, 17(6):1662-1669.
doi:10.1109/JSTQE.2011.2111360
|
[93] |
LEE H, CHEN T, LI J,
et al.. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip[J].
Nature Photonics, 2012, 6(6):369-373.
doi:10.1038/nphoton.2012.109
|
[94] |
CHEN T, LEE H, VAHALA K J. Design and characterization of whispering-gallery spiral waveguides[J].
Optics Express, 2014, 22(5):5196-5208.
doi:10.1364/OE.22.005196
|
[95] |
SHEEHAN R N, HORNE S, PETERS F H. The design of low-loss curved waveguides[J].
Optical and Quantum Electronics, 2008, 40(14-15):1211-1218.
doi:10.1007/s11082-009-9329-7
|
[96] |
BAETS R, LAGASSE P E. Loss calculation and design of arbitrarily curved integrated-optic waveduides[J].
J. Optical Society of America, 1983, 73(2):177-182.
doi:10.1364/JOSA.73.000177
|
[97] |
DAI D X. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects[J].
Optics Express, 2014, 22(22):27524-27534.
doi:10.1364/OE.22.027524
|
[98] |
KRAUSE M, RENNER H, BRINKMEYER E. Polarization-dependent curvature loss in silicon rib waveguides[J].
IEEE J. Selected Topics in Quantum Electronics, 2006, 12(6):1359-1362.
doi:10.1109/JSTQE.2006.884068
|
[99] |
DAOXIN D, BOWERS J E. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires[J].
Optics Express, 2011, 19(11):10940-10949.
doi:10.1364/OE.19.010940
|
[100] |
VERMEULEN D, ACOLEYEN K V, GHOSH S,
et al.. Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides[C]. 15th European conference on Integrated Optics (ECIO 2010), 2010.
|
[101] |
CHERCHI M, YLINEN S, HARJANNE M,
et al.. The Euler bend:paving the way for high-density integration on micron-scale semiconductor platforms[J].
Silicon Photonics Ix, 2014, 8990.
http://proceedings.spiedigitallibrary.org/pdfaccess.ashx?url=/data/conferences/spiep/78713/899004.pdf
|
[102] |
MEKIS A, CHEN J C, KURLAND I I,
et al.. High transmission through sharp bends in photonic crystal waveguides[J].
Physical Review Letters, 1996, 77(18):3787-3790.
doi:10.1103/PhysRevLett.77.3787
|
[103] |
BOGAERTS W, BAETS R, DUMON P,
et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology[J].
J. Lightwave Technology, 2005, 23(1):401-412.
doi:10.1109/JLT.2004.834471
|
[104] |
ALMEIDA V R, QIANFAN X, BARRIOS C A,
et al.. Guiding and confining light in void nanostructure[J].
Optics Letters, 2004, 29(11):1209-1211.
doi:10.1364/OL.29.001209
|
[105] |
KOOS C, VORREAU P, VALLAITIS T,
et al.. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides[J].
Nature Photonics, 2009, 3(4):216-219.
doi:10.1038/nphoton.2009.25
|
[106] |
JUNG E J, LEE W J, KIM M J,
et al.. Design of hybrid optical waveguide with a 90A degrees bend structure for high density photonics integrated circuits[J].
Optical and Quantum Electronics, 2013, 45(7):721-726.
doi:10.1007/s11082-012-9633-5
|
[107] |
CLAUDIO D, THEO L, MARTIN O J F,
et al.. Simulation of complex plasmonic circuits including bends[J].
Optics Express, 2011, 19(20):18979-18988.
doi:10.1364/OE.19.018979
|
[108] |
管小伟, 吴昊, 戴道锌.硅基混合表面等离子体纳米光波导及集成器件[J].中国光学, 2014, (2):181-195.
//www.illord.com/CN/abstract/abstract9117.shtml
GUAN X W, WU H, DAI D X. Silicon hybrid surface plasmonic nano-optics-waveguide and integration devices[J].
Chinese Optics, 2014, (2):181-195.
//www.illord.com/CN/abstract/abstract9117.shtml
|
[109] |
ZHOU X, ZHANG T, CHEN L,
et al.. A Graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement[J].
J. Lightwave Technology, 2014, 32(21):4199-4203.
doi:10.1109/JLT.2014.2350487
|
[110] |
DAOXIN D, SAILING H. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement[J].
Optics Express, 2009, 17(19):16646-16653.
doi:10.1364/OE.17.016646
|
[111] |
CHEN P X, ZHU Y P, SHI Y C,
et al.. Fabrication and characterization of suspended SiO
2ridge optical waveguides and the devices[J].
Optics Express, 2012, 20(20):22531-22536.
doi:10.1364/OE.20.022531
|
[112] |
LI L X, NORDIN G P, ENGLISH J M,
et al..
Integrated Optics:Devices, Materials, and Technologies Ⅶ[M]. SPIE, 2003.
|
[113] |
CASSAN E, VIVIEN L, LAVAL S. Polarization-independent 90 degrees-turns in single-mode micro-waveguides on silicon-on-insulator wafers for telecommunication wavelengths[J].
Optics Communications, 2004, 235(1-3):83-88.
doi:10.1016/j.optcom.2004.02.080
|
[114] |
QIAN Y, KIM S, SONG J,
et al.. Compact and low loss silicon-on-insulator rib waveguide 90 degrees bend[J].
Optics Express, 2006, 14(13):6020-6028.
doi:10.1364/OE.14.006020
|
[115] |
XIAO S J, KHAN M H, SHEN H,
et all. Modeling and measurement of losses in silicon-on-insulator resonators and bends[J].
Optics Express, 2007, 15(17):10553-10561.
doi:10.1364/OE.15.010553
|
[116] |
DAI DX. Subwavelength silica-based optical waveguide with a multilayered buffer for sharp bending[J].
Jl Lightwave Technology, 2009, 27(13):2489-2494.
doi:10.1109/JLT.2008.2011501
|
[117] |
LUO J, XU P, CHEN H,
et al. Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials[J].
Applied Physics Letters, 2012, 100(22):221903-221903-221905.
doi:10.1063/1.4723844
|
[118] |
FU Y, XU Y, CHEN H. Applications of gradient index metamaterials in waveguides[J].
Scientific Reports, 2015, 5.
https://www.researchgate.net/publication/286982878_Applications_of_gradient_index_metamaterials_in_waveguides/fulltext/56953d3708aeab58a9a4d7d0/286982878_Applications_of_gradient_index_metamaterials_in_waveguides.pdf
|
[119] |
李浩, 宋玲玲, 张立钧等.4通道交叉型二氧化硅光波导延迟线阵列的设计与制备[J].中国光学, 2014, (3):435-441.
//www.illord.com/CN/abstract/abstract9143.shtml
LI H, SONG L L, ZHANG L J,
et al.. Design and fabrication of 4 channels silica cross optical waveguide delay line array[J].
Chinese Optics, 2014, (3):435-441.
//www.illord.com/CN/abstract/abstract9143.shtml
|
[120] |
RASRAS M S, MADSEN C K, CAPPUZZO M A,
et al.. Integrated resonance-enhanced variable optical delay lines[J].
IEEE Photonics Technology Letters, 2005, 17(4):834-836.
doi:10.1109/LPT.2005.844009
|
[121] |
DENSMORE A, XU D X, JANZ S,
et al.. Spiral-path high-sensitive silicon photonic wire molecular sensor with temperature-independent response[J].
Optics Letters, 2008, 33(6):596-598.
doi:10.1364/OL.33.000596
|
[122] |
CIMINELLI C, DELLOLIO F, ARMENISE M N. High-Q spiral resonator for optical gyroscope applications:numerical and experimental investigation[J].
IEEE Photonics J., 2012, 4(4):1844-1854.
https://www.researchgate.net/publication/233979298_High-Q_Spiral_Resonator_for_Optical_Gyroscope_Applications_Numerical_and_Experimental_Investigation
|
[123] |
CHAN H P, CHENG S Y, CHUNG P S. Low loss wide-angle symmetric Y-branch waveguide[J].
Electronics Letters, 1996, 32(7):652-654.
doi:10.1049/el:19960452
|
[124] |
QIAN W, JUN L, SAILING H. Optimal design method of a low-loss broadband Y branch with a multimode waveguide section[J].
Applied Optics, 2003, 41(36):7644-7649.
https://www.researchgate.net/publication/10965541_Optimal_design_method_of_a_low-loss_broadband_Y_branch_with_a_multimode_waveguide_section
|
[125] |
CHERCHI M, YLINEN S, HARJANNE M,
et al.. Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform[J].
Silicon Photonics Ⅸ, 2014:8990.
https://www.researchgate.net/publication/262982534_Fabrication-tolerant_optical_filters_for_dense_integration_on_a_micron-scale_SOI_platform
|
[126] |
XIAO S J, KHAN M H, SHEN H,
et al.. Compact silicon microring resonators with ultra-low propagation loss in the C band[J].
Optics Express, 2007, 15(22):14467-14475.
doi:10.1364/OE.15.014467
|
[127] |
XIAO S, KHAN M H, SHEN H,
et al.. Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm[J].
J. Lightwave Technology, 2008, 26(2):228-236.
doi:10.1109/JLT.2007.911098
|
[128] |
LI X B, DENG Q Z, ZHOU Z P. Low loss, high-speed single-mode half-disk resonator[J].
Optics Letters, 2014, 39(13):3810-3813.
doi:10.1364/OL.39.003810
|
[129] |
BIAN Z X, LIU B, SHAKOURI A. InP-based passive ring-resonator-coupled lasers[J].
IEEE J. Quantum Electronics, 2003, 39(7):859-865.
doi:10.1109/JQE.2003.813222
|
[130] |
KIM K C, HAN I K, LEE J I,
et al.. High power single-lateral-mode operation of InAs quantum dot based ridge type laser diodes by utilizing a double bend waveguide structure[J].
Applied Physics Letters, 2010, 96(26):261103-261106.
doi:10.1063/1.3458704
|
[131] |
FAUGERON M, VILERA M, KRAKOWSKI M,
et al.. High power three-section integrated master oscillator power amplifier at 1.5μm[J].
IEEE Photonics Technology Letters, 2015, 27(13):1449-1452.
doi:10.1109/LPT.2015.2425534
|
[132] |
GUAN X, WU H, SHI Y,
et al.. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide[J].
Optics Letters, 2014, 39(2):259-262.
doi:10.1364/OL.39.000259
|
[133] |
UEMATSU T, KITAYAMA T, ISHIZAKA Y,
et al.. Ultra-broadband silicon-wire polarization beam combiner/splitter based on a wavelength insensitive coupler with a point-symmetrical configuration[J].
IEEE Photonics J., 2014, 6(1):1-8.
https://www.researchgate.net/publication/260521192_Ultra-Broadband_Silicon-Wire_Polarization_Beam_CombinerSplitter_Based_on_a_Wavelength_Insensitive_Coupler_With_a_Point-Symmetrical_Configuration
|
[134] |
SHRESTHA V R, LEE H S, LEE Y G,
et al.. Silicon nitride waveguide router enabling directional power transmission[J].
Optics Communications, 2014, 331(22):64-68.
http://adsabs.harvard.edu/abs/2014OptCo.331...64S
|
[135] |
ZHOU K, WEI W, ZHANG C. Simulation on a novel SOI optical waveguide directional coupler[J].
SPIE, 2003, 5253:897-900.
https://www.researchgate.net/publication/242241375_Simulation_on_a_novel_SOI_optical_waveguide_directional_coupler
|
[136] |
JONS K D, RENGSTL U, OSTER M,
et al.. Monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources[J].
J. Physics D-Applied Physics, 2015, 48(8):7-20.
https://www.researchgate.net/publication/261182152_Monolithic_on-chip_integration_of_semiconductor_waveguides_beamsplitters_and_single-photon_sources
|