Volume 10Issue 4
Jul. 2017
Turn off MathJax
Article Contents
DONG Li-chao, TIAN Si-cong, WANG Tao, LU Ze-feng, WANG Li-jie, SHU Shi-li, QIN Li, TONG Cun-zhu, WANG Li-jun. Progress of semiconductor superlattice phonon laser[J]. Chinese Optics, 2017, 10(4): 415-425. doi: 10.3788/CO.20171004.0415
Citation: DONG Li-chao, TIAN Si-cong, WANG Tao, LU Ze-feng, WANG Li-jie, SHU Shi-li, QIN Li, TONG Cun-zhu, WANG Li-jun. Progress of semiconductor superlattice phonon laser[J].Chinese Optics, 2017, 10(4): 415-425.doi:10.3788/CO.20171004.0415

Progress of semiconductor superlattice phonon laser

doi:10.3788/CO.20171004.0415
Funds:

National Program on Key Basic Research Projects of China2013CB933300

More Information
  • Corresponding author:TIAN Si-cong, E-mail:tiansicong@ciomp.ac.cn
  • Received Date:02 Mar 2017
  • Rev Recd Date:11 Apr 2017
  • Publish Date:01 Aug 2017
  • The coherent phonons at terahertz frequency have important applications in the field of detection and control of nanometer scale devices. Semiconductor superlattice phonon laser is an important way to realize the stable source of terahertz coherent phonon. Firstly, some methods about acoustic amplification in GHz-THz frequency range are reviewed. Next, the phonon amplification in superlattices, the working principles and design methods of superlattice acoustic Bragg reflectors and threshold of phonon laser are all elaborated. Then the research status on electrically pumped and optically pumped phonon lasers are summarized. Lastly, the applications for sub-terahertz phonon laser in the acoustic-electrons field are briefly discussed. The semiconductor superlattice phonon laser producing strong coherent phonons at terahertz frequency will have a much broader development prospect in multiple aspects, such as the detection and imaging of nanoscale devices.

  • loading
  • [1]
    程旭. 激发声波技术研究[D]. 杭州: 浙江大学, 2013.

    CHENG X. Research on laser-generated sonic wave[D]. Hangzhou:Zhejiang University, 2013. (in Chinese)
    [2]
    刘涛, 王江安, 宗思光, 等.水下目标的 声探测技术[J].舰船科学技术, 2012(6):70-73. http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201206019.htm

    LIU T, WANG J A, ZONG S G, et al.. The detection of the laser induced sound[J]. Ship Science and Technology, 2012(6):70-73. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201206019.htm
    [3]
    刘丹. 超声激励与检测技术研究[D]. 太原: 中北大学, 2015.

    LIU D. Research of the laser ultrasonic excitation and detection technology[D]. Taiyuan:North University of China, 2015. (in Chinese)
    [4]
    刘洋, 项占琴, 唐志峰. 超声技术在钢轨探伤中的应用研究[J].机械设计与制造, 2009(10):60-61. doi:10.3969/j.issn.1001-3997.2009.10.024

    LIU Y, XIANG ZH Q, TANG ZH F. Application of laser-induced ultrasound on rail flaw inspection[J]. Machinery Design & Manufacture, 2009(10):60-61. (in Chinese) doi:10.3969/j.issn.1001-3997.2009.10.024
    [5]
    ARMSTRONG M R, REED E J, KIM K Y, et al.. Observation of terahertz radiation coherently generated by acoustic waves[J]. Nature Physics, 2009, 5(4):285-288. doi:10.1038/nphys1219
    [6]
    MOSS D M, AKIMOV A V, CAMPION R P, et al.. Ultrafast strain-induced electronic transport in a GaAs pn junction diode[J]. Chinese Journal of Physics, 2011, 49(1):499-505. https://www.researchgate.net/publication/243439722_Ultrafast_acoustical_gating_of_the_photocurrent_in_a_p-i-n_tunneling_diode_incorporating_a_quantum_well
    [7]
    MOSS D M, AKIMOV A V, GLAVIN B A, et al.. Ultrafast strain-induced current in a GaAs Schottky diode[J]. Physical Review Letters, 2011, 106(6):066602. doi:10.1103/PhysRevLett.106.066602
    [8]
    TUCKER E B. Amplification of 9.3-kMc/sec ultrasonic pulses by maser action in ruby[J]. Physical Review Letters, 1961, 6(10):547. doi:10.1103/PhysRevLett.6.547
    [9]
    TUCKER E B. Attenuation of longitudinal ultrasonic vibrations by spin-phonon coupling in ruby[J]. Physical Review Letters, 1961, 6(4):183. doi:10.1103/PhysRevLett.6.183
    [10]
    BRON W E, GRILL W. Stimulated phonon emission[J]. Physical Review Letters, 1978, 40(22):1459. doi:10.1103/PhysRevLett.40.1459
    [11]
    HU P. Stimulated emission of 29 cm -1phonons in ruby[J]. Physical Review Letters, 1980, 44(6):417. doi:10.1103/PhysRevLett.44.417
    [12]
    OVERWIJK M H F, DIJKHUIS J I, de WIJN H W. Superfluorescence and amplified spontaneous emission of 29 cm -1phonons in ruby[J]. Physical Review Letters, 1990, 65(16):2015. doi:10.1103/PhysRevLett.65.2015
    [13]
    PRIEUR J Y, DEVAUD M, JOFFRIN J, et al.. Sound amplification by stimulated emission of phonons using two-level systems in glasses[J]. Physica B:Condensed Matter, 1996, 219:235-238. https://www.researchgate.net/publication/229247797_Sound_amplification_by_stimulated_emission_of_phonons_using_two-level_systems_in_glasses
    [14]
    PHILLIPS W A. Two-level states in glasses[J]. Reports on Progress in Physics, 1987, 50(12):1657. doi:10.1088/0034-4885/50/12/003
    [15]
    汪丽杰, 佟存柱, 曾玉刚, 等.高亮度布拉格反射波导 器[J].发光学报, 2013(6):787-791. http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201306022.htm

    WANG L J, TONG C ZH, ZENG Y G, et al.. High brightness Bragg reflection waveguide laser[J]. Chinese Journal of Luminescence, 2013(6):787-791. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201306022.htm
    [16]
    戎佳敏, 邢恩博, 赵帅, 等. 2 μm GaSb基低垂直发散角布拉格反射波导 器优化设计[J].发光学报, 2015(12):1434-1439.

    RONG J M, XING E B, ZHAO S H, et al.. Modeling of 2 μm GaSb based Bragg reflection waveguide lasers with ultra-low vertical divergence[J]. Chinese Journal of Luminescence, 2015(12):1434-1439. (in Chinese)
    [17]
    SRIVASTAVA G P. The physics of phonons[M]. Bristol:Adam Hilger, 1990.
    [18]
    TRIGO M, BRUCHHAUSEN A, FAINSTEIN A, et al.. Confinement of acoustical vibrations in a semiconductor planar phonon cavity[J]. Physical Review Letters, 2002, 89(22):227402. doi:10.1103/PhysRevLett.89.227402
    [19]
    HUYNH A, LANZILLOTTI-KIMURA N D, JUSSERAND B, et al.. Subterahertz phonon dynamics in acoustic nanocavities[J]. Physical Review Letters, 2006, 97(11):115502. doi:10.1103/PhysRevLett.97.115502
    [20]
    刘军. 高Q声子晶体声波传感机理及实验研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2013.

    LIU J. The theoretical and experimental investigation of phononic crystals for high Q acoustic sensing[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013. (in Chinese)
    [21]
    KOMIRENKO S M, KIM K W, DEMIDENKO A A, et al.. Generation and amplification of sub-THz coherent acoustic phonons under the drift of two-dimensional electrons[J]. Physical Review B, 2000, 62(11):7459. doi:10.1103/PhysRevB.62.7459
    [22]
    MAKLER S S, VASILEVSKIY M I, ANDA E V, et al.. A source of terahertz coherent phonons[J]. Journal of Physics:Condensed Matter, 1998, 10(26):5905. doi:10.1088/0953-8984/10/26/017
    [23]
    NARAYANAMURTI V, STÖRMER H L, CHIN M A, et al.. Selective transmission of high-frequency phonons by a superlattice:the "dielectric" phonon filter[J]. Physical Review Letters, 1979, 43(27):2012. doi:10.1103/PhysRevLett.43.2012
    [24]
    GLAVIN B A, KOCHELAP V A, LINNIK T L, et al.. Generation of high-frequency coherent acoustic phonons in superlattices under hopping transport-I:linear theory of phonon instability[J]. Physical Review B, 2002, 65(8):085303. doi:10.1103/PhysRevB.65.085303
    [25]
    GLAVIN B A, KOCHELAP V A, LINNIK T L, et al.. Generation of high-frequency coherent acoustic phonons in superlattices under hopping transport-Ⅱ:steady-state phonon population and electric current in generation regime[J]. Physical Review B, 2002, 65(8):085304. doi:10.1103/PhysRevB.65.085304
    [26]
    GLAVIN B A, KOCHELAP V A, LINNIK T L. Generation of high-frequency coherent acoustic phonons in a weakly coupled superlattice[J]. Applied Physics Letters, 1999, 74(23):3525-3527. doi:10.1063/1.124149
    [27]
    STANTON N M, KINI R N, KENT A J, et al.. Terahertz phonon optics in GaAs/AlAs superlattice structures[J]. Physical Review B, 2003, 68(11):113302. doi:10.1103/PhysRevB.68.113302
    [28]
    LANZILLOTTI-KIMURA N D, PERRIN B, FAINSTEIN A, et al.. Nanophononic thin-film filters and mirrors studied by picosecond ultrasonics[J]. Applied Physics Letters, 2010, 96(5):053101. doi:10.1063/1.3295701
    [29]
    ROZAS G, WINTER M F P, JUSSERAND B, et al.. Lifetime of THz acoustic nanocavity modes[J]. Physical Review Letters, 2009, 102(1):015502. doi:10.1103/PhysRevLett.102.015502
    [30]
    LANZILLOTTI-KIMURA N D, FAINSTEIN A, LEMAÎTRE A, et al.. Nanowave devices for terahertz acoustic phonons[J]. Applied Physics Letters, 2006, 88(8):083113. doi:10.1063/1.2178415
    [31]
    吕苏娜. 应用声子晶体滤波器改善声子 器线宽的研究[D]. 南京: 南京邮电大学, 2014.

    LÜ S N. The study on the improvement of linewidth of phonon laser with phonon crystal filter[D]. Nanjing:Nanjing University of Posts & Telecommunications, 2014. (in Chinese)
    [32]
    徐丹峰. 基于声子光栅调制的声子 器性能分析[D]. 南京: 南京邮电大学, 2014.

    XU D F. Performance analysis on phonon lasers ofphononic grating modulation[D]. Nanjing:Nanjing University of Posts & Telecommunications, 2014. (in Chinese)
    [33]
    MARYAM W, AKIMOV A V, CAMPION R P, et al.. Dynamics of a vertical cavity quantum cascade phonon laser structure[J]. Nature Communications, 2013, 4(4):2184. https://core.ac.uk/download/pdf/20023850.pdf
    [34]
    KINI R N, KENT A J, STANTON N M, et al.. Angle dependence of acoustic phonon-assisted tunneling in a weakly coupled superlattice:evidence for terahertz phonon amplification[J]. Journal of Applied Physics, 2005, 98(3):033514-033514. doi:10.1063/1.1989435
    [35]
    CAVILL S A, CHALLIS L J, KENT A J, et al.. Acoustic phonon-assisted tunneling in GaAs/AlAs superlattices[J]. Physical Review B, 2002, 66(23):235320. doi:10.1103/PhysRevB.66.235320
    [36]
    BEARDSLEY R P, CAMPION R P, GLAVIN B A, et al.. A GaAs/AlAs superlattice as an electrically pumped THz acoustic phonon amplifier[J]. New Journal of Physics, 2011, 13(7):073007. doi:10.1088/1367-2630/13/7/073007
    [37]
    MIZUNO S, TAMURA S. Theory of acoustic-phonon transmission in finite-size superlattice systems[J]. Physical Review B, 1992, 45(2):734. doi:10.1103/PhysRevB.45.734
    [38]
    KENT A J, BEARDSLEY R. Semiconductor superlattice sasers at terahertz frequencies:design, fabrication and measurement[M]//Length-Scale Dependent Phonon Interactions. New York:Springer, 2014:227-257.
    [39]
    KENT A J, KINI R N, STANTON N M, et al.. Acoustic phonon emission from a weakly coupled superlattice under vertical electron transport:observation of phonon resonance[J]. Physical Review Letters, 2006, 96(21):215504. doi:10.1103/PhysRevLett.96.215504
    [40]
    RYTOV S M. Acoustical properties of a thinly laminated medium[J]. Soviet Physics Acoustics, 1956, 2:68-80.
    [41]
    KENT A J, STANTON N M, CHALLIS L J, et al.. Generation and propagation of monochromatic acoustic phonons in gallium arsenide[J]. Applied Physics Letters, 2002, 81(18):3497-3499. doi:10.1063/1.1515118
    [42]
    VVEDENSKY D. Epitaxial growth of semiconductors[M]//BARNHAM K, VVEDENSKY D. Low-Dimensional Semiconductor Structures:Fundamentals and Device Applications. Cambridge:Cambridge University Press, 2001:1-55.
    [43]
    YAMAMOTO A, MISHINA T, MASUMOTO Y, et al.. Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices[J]. Physical Review Letters, 1994, 73(5):740-743. doi:10.1103/PhysRevLett.73.740
    [44]
    BARTELS A, DEKORSY T, KURZ H, et al.. Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices:excitation and detection[J]. Physical Review Letters, 1999, 82(5):1044-1047. doi:10.1103/PhysRevLett.82.1044
    [45]
    SUN C K, LIANG J C, YU X Y. Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields[J]. Physical Review Letters, 2000, 84(1):179-182. doi:10.1103/PhysRevLett.84.179
    [46]
    MATSUDA O, WRIGHT O B, HURLEY D H, et al.. Coherent shear phonon generation and detection with ultrashort optical pulses[J]. Physical Review Letters, 2004, 93(9):095501. doi:10.1103/PhysRevLett.93.095501
    [47]
    TRIGO M, ECKHAUSE T A, REASON M, et al.. Observation of surface-avoiding waves:a new class of extended states in periodic media[J]. Physical Review Letters, 2006, 97(12):124301. doi:10.1103/PhysRevLett.97.124301
    [48]
    DEVOS A, POINSOTTE F, GROENEN J, et al.. Strong generation of coherent acoustic phonons in semiconductor quantum dots[J]. Physical Review Letters, 2007, 98(20):207402. doi:10.1103/PhysRevLett.98.207402
    [49]
    MOSS D M, AKIMOV A V, KENT A J, et al.. Coherent terahertz acoustic vibrations in polar and semipolar gallium nitride-based superlattices[J]. Applied Physics Letters, 2009, 94(1):011909. doi:10.1063/1.3056653
    [50]
    LANZILLOTTI-KIMURA N D, FAINSTEIN A, PERRIN B, et al.. Bloch oscillations of THz acoustic phonons in coupled nanocavity structures[J]. Physical Review Letters, 2010, 104(19):197402. doi:10.1103/PhysRevLett.104.197402
    [51]
    BRUCHHAUSEN A, GEBS R, HUDERT F, et al.. Subharmonic resonant optical excitation of confined acoustic modes in a free-standing semiconductor membrane at GHz frequencies with a high-repetition-rate femtosecond laser[J]. Physical Review Letters, 2011, 106(7):077401. doi:10.1103/PhysRevLett.106.077401
    [52]
    WALKER P M, KENT A J, HENINI M, et al.. Terahertz acoustic oscillations by stimulated phonon emission in an optically pumped superlattice[J]. Physical Review B, 2009, 79(24):245313. doi:10.1103/PhysRevB.79.245313
    [53]
    BEARDSLEY R P, AKIMOV A V, HENINI M, et al.. Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice[J]. Physical Review Letters, 2010, 104(8):085501. doi:10.1103/PhysRevLett.104.085501
    [54]
    WILSON T, KASPER E, OEHME M, et al.. Evidence of longitudinal acoustic phonon generation in Si doping superlattices by Ge prism-coupled THz laser radiation[J]. IOP Conference Series:Materials Science and Engineering, 2014, 68:012008. doi:10.1088/1757-899X/68/1/012008
    [55]
    HUYNH A, PERRIN B, LEMAîTRE A. Semiconductor superlattices:a tool for terahertz acoustics[J]. Ultrasonics, 2015, 56:66-79. doi:10.1016/j.ultras.2014.07.009
    [56]
    SHINOKITA K, REIMANN K, WOERNER M, et al.. Strong amplification of coherent acoustic phonons by intraminiband currents in a semiconductor superlattice[J]. Physical Review Letters, 2016, 116(7):075504. doi:10.1103/PhysRevLett.116.075504
    [57]
    王立军, 宁永强, 秦莉, 等.大功率半导体 器研究进展[J].发光学报, 2015(1):1-19. http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201501002.htm

    WANG L J, NING Y Q, Qin L, et al.. Development of high power diode laser[J]. Chinese Journal of Luminescence, 2015, 01:1-19. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201501002.htm
    [58]
    佟存柱, 汪丽杰, 田思聪, 等.布拉格反射波导半导体 器的研究[J].中国光学, 2015(3):480-498. //www.illord.com/CN/abstract/abstract9311.shtml

    TONG C Z, WANG L J, TIAN S C, et al.. Study on Bragg reflection waveguide diode laser[J]. Chinese Optics, 2015(3):480-498. (in Chinese) //www.illord.com/CN/abstract/abstract9311.shtml
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(2237) PDF downloads(704) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map