Volume 10Issue 4
Jul. 2017
Turn off MathJax
Article Contents
SUN Bao-chen, HOU Yue-min, LI Feng, LI Jian-zhi. Coupling characteristics between fiber grating and stimulated Brillouin signal[J]. Chinese Optics, 2017, 10(4): 484-490. doi: 10.3788/CO.20171004.0484
Citation: SUN Bao-chen, HOU Yue-min, LI Feng, LI Jian-zhi. Coupling characteristics between fiber grating and stimulated Brillouin signal[J].Chinese Optics, 2017, 10(4): 484-490.doi:10.3788/CO.20171004.0484

Coupling characteristics between fiber grating and stimulated Brillouin signal

doi:10.3788/CO.20171004.0484
Funds:

National Natural Science Foundation of China51508349

Hebei Province Natural Science Foundation of ChinaE2015210094

Youth S & T Research Fund of Colleges & Universities in Hebei ProvinceQN2016080

More Information
  • Corresponding author:LI Jian-zhi, E-mail:lijianzhigang@163.com
  • Received Date:10 Mar 2017
  • Rev Recd Date:15 Apr 2017
  • Publish Date:01 Aug 2017
  • Recently, the integration technique of fiber Bragg grating (FBG) sensors and distributed optical fiber sensors has attracted extensive attention. However, it is unknown about coupling properties between FBG and Brillouin signal. In this paper, we investigate the effects of optical grating types, wavelength and reflectivity and exposure-induced refractive index of optical fiber on stimulated Brillouin signal. Meanwhile, the influence of spatial resolution on positioning of FBG is discussed. Experimental results show that the sharp reflected peak from FBG occurs in the hybrid system of FBG sensor and Brillouin optical time-domain analysis (BOTDA), while no reflected peak occurs for chirped grating and long period grating, as well as exposure-induced refractive index of optical fibers. FBG reflectivity has no connection with power spectrum of simulated Brillouin scattering. It is also shown that when the wavelength of FBG is close to 1 550 nm, the influence on stimulated Brillouin signal is the largest. A positioning error of approximate 4 cm is obtained among a sensing range of 8 m, which is independent on the spatial resolution.

  • loading
  • [1]
    HE J, ZHOU Z, WU H. Long-term monitoring of a civil defensive structure based on distributed Brillouin optical fiber sensor[J]. Pacific Science Review, 2007, 9(1):97-102. doi:10.1007/s13349-016-0172-9
    [2]
    MOREY W W, MELTZ G, GLENN W H. Fiber optic Bragg grating sensors[J]. SPIE, 1990, 1169:98-107.
    [3]
    KERSEY A D, DAVIS M A, PATRICK H J, et al.. Fiber grating sensors[J]. Journal of Lightwave Technology, 1997, 15(8):1442-1463. doi:10.1109/50.618377
    [4]
    [5]
    SUN Q, TU X, SUN S, et al.. Long-range BOTDA sensor over 50 km distance employing pre-pumped simplex coding[J]. Journal of Optics, 2016, 18(5):055501. doi:10.1088/2040-8978/18/5/055501
    [6]
    WILLIAMS, XIAOYI, LIANG, et al.. Investigation of combined Brillouin gain and loss in a birefringent fiber with applications in sensing[J]. Chinese Optics Letters, 2014, 12(12):126-132. https://www.researchgate.net/publication/273475820_Investigation_of_combined_Brillouin_gain_and_loss_in_a_birefringent_fiber_with_applications_in_sensing
    [7]
    MENG D, ANSARI F, FENG X. Detection and monitoring of surface micro-cracks by PPP-BOTDA[J]. Applied Optics, 2015, 54(16):4972-4978. doi:10.1364/AO.54.004972
    [8]
    李川, 刘江, 庄君刚, 等.基于背向Brillouin散射监测混凝土应变[J].光学精密工程, 2014, 22(2):325-330. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201402012.htm

    LI CH, LIU J, ZHUANG J G, et al.. Strain detection concrete structures based on Brillouin backscattering[J]. Optics and Precision Engineering, 2014, 22(2):325-330. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201402012.htm
    [9]
    FOALENG S M, TUR M, BEUGNOT J C, et al.. High spatial and spectral resolution long-range sensing using Brillouin echoes[J]. Journal of Lightwave Technology, 2010, 28(20):2993-3003. doi:10.1109/JLT.2010.2073443
    [10]
    SPERBER T, EYAL A, TUR M, et al.. High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing[J]. Optics Express, 2010, 18(8):8671-8679. doi:10.1364/OE.18.008671
    [11]
    THEVENAZ L, DENISOV A, SOTO M A. Brillouin distributed fiber sensing at ultra-high spatial resolution[C]. Proceedings of the IEEE Photonics Conference (IPC) 2015, Reston, USA, October 4-8, 2015.
    [12]
    徐国权, 熊代余.光纤光栅传感技术在工程中的应用[J].中国光学, 2013, 6(3):306-317. //www.illord.com/CN/abstract/abstract8937.shtml

    XU G Q, XIONG D Y.Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics, 2013, 6(3):306-317. (in Chinese) //www.illord.com/CN/abstract/abstract8937.shtml
    [13]
    吴晶, 吴晗平, 黄俊斌, 等.光纤光栅传感信号解调技术研究进展[J].中国光学, 2014, 7(4):519-531. //www.illord.com/CN/abstract/abstract9164.shtml

    WU J, WU H P, HUANG J B, et al.. Research progress in signal demodulation technology of fiber Bragg grating sensors[J]. Chinese Optics, 2014, 7(4):519-531. (in Chinese) //www.illord.com/CN/abstract/abstract9164.shtml
    [14]
    LUO J, HAO Y, YE Q, et al.. Development of optical fiber sensors based on Brillouin scattering and FBG for on-line monitoring in overhead transmission lines[J]. Journal of Lightwave Technology, 2013, 31(10):1559-1565. doi:10.1109/JLT.2013.2252882
    [15]
    SUN A, SEMENOVA Y, FARRELL G, et al.. BOTDR integrated with FBG sensor array for distributed strain measurement[J]. Electronics Letters, 2010, 46(1):66-68. doi:10.1049/el.2010.2621
    [16]
    LAN C, ZHOU Z, OU J. Monitoring of structural prestress loss in RC beams by inner distributed Brillouin and fiber Bragg grating sensors on a single optical fiber[J]. Structural Control and Health Monitoring, 2014, 21(3):317-330. doi:10.1002/stc.v21.3
    [17]
    TAKI M, NANNIPIERI T, ZAIDI F, et al.. Hybrid optical fibre sensor for simultaneous dynamic FBG interrogation and distributed static strain/temperature measurements[J]. Electronics Letters, 2012, 48(24):1548-1550. doi:10.1049/el.2012.2457
    [18]
    LI J, SUN B, KINZO K. The influence of FBG on Brillouin distributed sensor[J]. Journal of Civil Structural Health Monitoring, 2015, 5(5):629-643. doi:10.1007/s13349-015-0104-0
    [19]
    李剑芝, 姜德生.载氢与掺锗石英光纤的光致折射率改变[J].无机材料学报, 2006, 21(2):345-350. http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL200602014.htm

    LI J ZH, JIANG D SH. Photolytic index changes in germanosilicate and hydrogen-loaded fiber[J]. Journal of Inorganic Matreials, 2006, 21(2):345-350. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL200602014.htm
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)/Tables(4)

    Article views(2283) PDF downloads(342) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map