Citation: | ZHENG Ai-xian, ZHANG Xiao-long, LIU Xiao-long. Application in nucleic acid functionalized nanoprobe in cellular fluorescence imaging[J].Chinese Optics, 2018, 11(3): 363-376.doi:10.3788/CO.20181103.0363 |
[1] |
TORABI S F, LU Y. Functional DNA nanomaterials for sensing and imaging in living cells[J].
Curr. Opin Biotechnol., 2014, 28:88-95.
doi:10.1016/j.copbio.2013.12.011
|
[2] |
LI J, MO L, LU C H,
et al.. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications[J].
Chem. Soc. Rev., 2016, 45(5):1410-1431.
doi:10.1039/C5CS00586H
|
[3] |
LIANG H, ZHANG X B, LV Y,
et al.. Functional DNA-containing nanomaterials:cellular applications in biosensing, imaging, and targeted therapy[J].
Acc Chem. Res., 2014, 47(6):1891-1901.
doi:10.1021/ar500078f
|
[4] |
MIAO P, TANG Y, WANG B,
et al.. Near-infrared Ag
2S quantum dots-based DNA logic gate platform for miRNA diagnostics[J].
Anal. Chem., 2016, 88(15):7567-7573.
doi:10.1021/acs.analchem.6b01044
|
[5] |
CHENG W, YAN W, MIAO P. TNF-α responsive DNA star trigon formation from four hairpin probes and the analytical application[J].
Sci. China. Chem., 2017, 60(3):405-409.
doi:10.1007/s11426-016-0259-4
|
[6] |
CHAKRABORTY K, VEETIL A T, JAFFREY S R,
et al.. Nucleic acid-based nanodevices in biological imaging[J].
Annu. Rev. Biochem., 2016, 85(1):349-373.
doi:10.1146/annurev-biochem-060815-014244
|
[7] |
LI J, CHENG F, HUANG H,
et al.. Nanomaterial-based activatable imaging probes:from design to biological applications[J].
Chem. Soc. Rev., 2015, 44(21):7855-7880.
doi:10.1039/C4CS00476K
|
[8] |
LUBY B M, CHARRON D M, MACLAUGHLIN C M,
et al.. Activatable fluorescence:from small molecule to nanoparticle[J].
Adv. Drug Deliv. Rev., 2016, 113:97-121.
http://cn.bing.com/academic/profile?id=a7aeb37e5bac1824f6aa3ca6fbc1128f&encoded=0&v=paper_preview&mkt=zh-cn
|
[9] |
HU R, ZHANG X B, KONG R M,
et al.. Nucleic acid-functionalized nanomaterials for bioimaging applications[J].
J. Mater. Chem., 2011, 21(41):16323-16334.
doi:10.1039/c1jm12588e
|
[10] |
ZHENG J, YANG R H, SHI M L,
et al.. Rationally designed molecular beacons for bioanalytical and biomedical applications[J].
Chem. Soc. Rev., 2015, 44(10):3036-3055.
doi:10.1039/C5CS00020C
|
[11] |
FARRERA C, ANDON F T, FELIU N. Carbon nanotubes as optical sensors in biomedicine[J].
ACS Nano, 2017, 11(11):10637-10643.
doi:10.1021/acsnano.7b06701
|
[12] |
ZHU X, LIU Y, LI P,
et al.. Applications of graphene and its derivatives in intracellular biosensing and bioimaging[J].
Analyst, 2016, 141(15):4541-4553.
doi:10.1039/C6AN01090C
|
[13] |
PENG H Y, TANG H, JIANG J H. Recent progress in gold nanoparticle-based biosensing and cellular imaging[J].
Sci. China Chem., 2016, 59(7):783-793.
doi:10.1007/s11426-016-5570-7
|
[14] |
HILDEBRANDT N, SPILLMANN C M, ALGAR W R,
et al.. Energy transfer with semiconductor quantum dot bioconjugates:a versatile platform for biosensing, energy harvesting, and other developing applications[J].
Chem. Rev., 2017, 117(2):536-711.
doi:10.1021/acs.chemrev.6b00030
|
[15] |
ZHANG C, DING C, XIANG D,
et al.. DNA functionalized fluorescent quantum dots for bioanalytical applications[J].
Chinese J. Chem., 2016, 34(3):317-325.
doi:10.1002/cjoc.v34.3
|
[16] |
SANTANGELO P J. Molecular beacons and related probes for intracellular RNA imaging[J].
WIREs Nanomedicine and Nanobiotechnology, 2010, 2(1):11-19.
doi:10.1002/wnan.52
|
[17] |
杨立敏, 刘波, 李娜, 等.纳米荧光探针用于核酸分子的检测及成像研究[J].化学学报, 2017, 75:1047-1060.
http://www.cnki.com.cn/Article/CJFDTotal-HXXB201711003.htm
YANG L M, LIU B, LI N,
et al.. Fluorescent nanoprobe for detection and imaging of nucleic acid molecules[J].
Acta Chim. Sinica, 2017, 75:1047-1060.(in Chinese)
http://www.cnki.com.cn/Article/CJFDTotal-HXXB201711003.htm
|
[18] |
SEFEROS D S, GILJOHANN D A, HILL H D,
et al..Nano-flares:probes for transfection and mRNA detection in living cells[J].
J. Am. Chem. Soc., 2007, 129(50):15477-15479.
doi:10.1021/ja0776529
|
[19] |
CHOI C K K, LI J M, WEI K C,
et al.. A gold@polydopamine core-shell nanoprobe for long-term intracellular detection of microRNAs in differentiating stem cells[J].
Methods Mol. Biol., 2017, 1570:155-164.
doi:10.1007/978-1-4939-6840-4
|
[20] |
LI N, CHANG C, PAN W,
et al.. A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells[J].
Angew Chem. Int. Ed., 2012, 51(30):7426-7430.
doi:10.1002/anie.201203767
|
[21] |
LI J L, ZHONG X Q, CHENG F F,
et al.. One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging[J].
Anal. Chem., 2012, 84:4140-4146.
doi:10.1021/ac3003402
|
[22] |
HE X, ZENG T, LI Z,
et al.. Catalytic molecular imaging of microRNA in living cells by DNA-programmed nanoparticle disassembly[J].
Angew Chem. Int. Ed., 2016, 55(9):3073-3076.
doi:10.1002/anie.201509726
|
[23] |
YANG Y, HUANG J, YANG X,
et al.. FRET nanoflares for intracellular mRNA detection:avoiding false positive signals and minimizing effects of system fluctuations[J].
J. Am. Chem. Soc., 2015, 137(26):8340-8343.
doi:10.1021/jacs.5b04007
|
[24] |
CHEN J J, TANG L J, CHU X,
et al.. Enzyme-free, signal-amplified nucleic acid circuits for biosensing and bioimaging analysis[J].
Analyst, 2017, 142(7):3048-3061.
http://cn.bing.com/academic/profile?id=2d3d9e3d176fe3a5cba2513c7ffb1f21&encoded=0&v=paper_preview&mkt=zh-cn
|
[25] |
BI S, YUE S, ZHANG S. Hybridization chain reaction:a versatile molecular tool for biosensing, bioimaging, and biomedicine[J].
Chem. Soc. Rev., 2017, 46(14):4281-4298.
doi:10.1039/C7CS00055C
|
[26] |
WU Z, LIU G Q, YANG X L,
et al.. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA Imaging[J].
J. Am. Chem. Soc., 2015, 137(21):6829-6836.
doi:10.1021/jacs.5b01778
|
[27] |
YANG D W, TANG Y G, MIAO P. Hybridization chain reaction directed DNA superstructures assembly for biosensing applications[J].
TrAC Trends in Analytical Chemistry, 2017, 94:1-13.
doi:10.1016/j.trac.2017.06.011
|
[28] |
MENG H M, LIU H, KUAI H,
et al..Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy[J].
Chem. Soc. Rev., 2016, 45(9):2583-2602.
doi:10.1039/C5CS00645G
|
[29] |
YANG D, TANG Y, GUO Z,
et al.. Proximity aptasensor for protein detection based on an enzyme-free amplification strategy[J].
Mol. Bio. Syst., 2017, 13:1936-1939.
http://cn.bing.com/academic/profile?id=2cc603ee3e16511018446dc02f88fb6c&encoded=0&v=paper_preview&mkt=zh-cn
|
[30] |
靳贵晓, 李娟, 杨黄浩.核酸适体的筛选及其在生物医学领域的研究进展[J].福州大学学报, 2016, 44(6):919-934.
https://mall.cnki.net/qikan-SPJX201610046.html
JIN G X, LI J, YANG H H. Research progress of aptamer screening and its application in biomedicine[J].
Journal of Fuzhou University, 2016, 44(6):919-934.(in Chinese)
https://mall.cnki.net/qikan-SPJX201610046.html
|
[31] |
ZHANG H, LI F, DEVER B,
et al.. DNA-mediated homogeneous binding assays for nucleic acids and proteins[J].
Chem. Rev., 2013, 113(4):2812-2841.
doi:10.1021/cr300340p
|
[32] |
XING H, WONG N Y, XIANG Y,
et al.. DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery[J].
Curr. Opin. Chem. Biol., 2012, 16:429-435.
doi:10.1016/j.cbpa.2012.03.016
|
[33] |
SUN H G, TAN W H, ZU Y L. Aptamers:versatile molecular recognition probes for cancer detection[J].
Analyst, 2016, 141(2):403-415.
doi:10.1039/C5AN01995H
|
[34] |
LU D, HE L, ZHANG G,
et al.. Aptamer-assembled nanomaterials for fluorescent sensing and imaging[J].
Nanophotonics, 2017, 6(1):109-121.
http://cn.bing.com/academic/profile?id=6032d950d7888ccbaef6076faab90cde&encoded=0&v=paper_preview&mkt=zh-cn
|
[35] |
DONG J T, ZHAO M P. In-vivo fluorescence imaging of adenosine 5'-triphosphate[J].
Trends in Analytical Chemistry, 2016, 80:190-203.
doi:10.1016/j.trac.2016.03.020
|
[36] |
黄子珂, 刘超, 付强强, 等.核酸适配体荧光探针在生化分析和生物成像中的研究进展[J].应用化学, 2018, 35(1):28-39.
doi:10.11944/j.issn.1000-0518.2018.01.170363
HUANG Z K, LIU CH, FU Q Q,
et al.. Aptamer-based fluorescence probe for bioanalysis and bioimaging[J].
Chinese Journal of Applied Chemistry, 2018, 35(1):28-39. (in Chinese)
doi:10.11944/j.issn.1000-0518.2018.01.170363
|
[37] |
WANG J, ZHU G, YOUM,
et al.. Assembly of aptamer on gold switch nanorods probes for and photosensitizer targeted photothermal and photodynamic cancer therapy[J].
ACS Nano, 2012, 6(6):5070-5077.
doi:10.1021/nn300694v
|
[38] |
CHEN T T, TIAN X, LIU C L,
et al.. Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor[J].
J. Am. Chem. Soc., 2015, 137(2):982-989.
doi:10.1021/ja511988w
|
[39] |
KIM J K, CHOI K J, LEE M,
et al.. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer-and microRNA-221 molecular beacon-conjugated nanoparticle[J].
Biomaterials, 2012, 33(1):207-217.
doi:10.1016/j.biomaterials.2011.09.023
|
[40] |
LIU J, CAO Z, LU Y. Functional nucleic acid sensors[J].
Chem. Rev., 2009, 109:1948-1998.
doi:10.1021/cr030183i
|
[41] |
ZHOU W H, LIU J W. Multi-metal-dependent nucleic acid enzymes[J].
Metallomics, 2018, 10(11):30-48.
http://cn.bing.com/academic/profile?id=5b551e3bf84ea3ef42139801d851002b&encoded=0&v=paper_preview&mkt=zh-cn
|
[42] |
MCGHEE C E, LOH K Y, LU Y. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells[J].
Curr. Opin Biotechnol., 2017, 45:191-201.
doi:10.1016/j.copbio.2017.03.002
|
[43] |
MOKANY E, BONE S M, YOUNG P E,
et al.. MNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switches[J].
J. Am. Chem. Soc., 2010, 132(3):1051-1059.
doi:10.1021/ja9076777
|
[44] |
SONG P, XIANG Y, XING H,
et al.. Label-free catalytic and molecular beacon containing an abasic site for sensitive fluorescent detection of small inorganic and organic molecules[J].
Anal. Chem., 2012, 84(6):2916-2922.
doi:10.1021/ac203488p
|
[45] |
LI L, FENG J, FAN Y,
et al.. Simultaneous imaging of Zn
2+and Cu
2+in living cells based on DNAzyme modified gold nanoparticle[J].
Anal. Chem., 2015, 87(9):4829-4835.
doi:10.1021/acs.analchem.5b00204
|
[46] |
YANG Y, HUANG J, YANG X,
et al.. Aptazyme-gold nanoparticle sensor for amplified molecular probing in living cells[J].
Anal. Chem., 2016, 88(11):5981-5987.
doi:10.1021/acs.analchem.6b00999
|
[47] |
PENG H Y, LI X F, ZHANG H Q,
et al.. A microRNA-initiated DNAzyme motor operating in living cells[J].
Nat. Commun., 2017, 8:14378.
doi:10.1038/ncomms14378
|
[48] |
YANG Y, HUANG J, YANG X,
et al.. Gold nanoparticle based hairpin-locked-DNAzyme probe for amplified miRNA imaging in living cells[J].
Anal. Chem., 2017, 89(11):5850-5856.
doi:10.1021/acs.analchem.7b00174
|
[49] |
CHEN F, BAI M, CAO K,
et al.. Fabricating MnO
2nanozymes as intracellular catalytic DNA circuit generators for versatile imaging of base-excision repair in living cells[J].
Adv. Funct. Mater., 2017, 27(45):1702748.
doi:10.1002/adfm.v27.45
|
[50] |
HE D G, HE X, YANG X,
et al.. A smart ZnO@polydopamine-nucleic acid nanosystem for ultrasensitive live cell mRNA imaging by the target-triggered intracellular self-assembly of active DNAzyme nanostructures[J].
Chemical Science, 2017, 8(4):2832-2840.
doi:10.1039/C6SC04633A
|