Citation: | CHEN Jian, MENG Wen-chao, LING Xiao, DENG Sheng-song, MEI Qing-song. Multicolor fluorescent emission of graphene oxide and its application in fluorescence imaging[J].Chinese Optics, 2018, 11(3): 377-391.doi:10.3788/CO.20181103.0377 |
[1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V,
et al.. Electric field effect in atomically thin carbon films[J].
Science, 2004, 306(5696):666-669.
doi:10.1126/science.1102896
|
[2] |
SINGH V, JOUNG D, ZHAI L,
et al.. Graphene based materials:Past, present and future[J].
Prog. Mater. Sci., 2011, 56(8):1178-1271.
doi:10.1016/j.pmatsci.2011.03.003
|
[3] |
XU Y, SHI G, DUAN X. Self-assembled three-dimensional graphene macrostructures:synthesis and applications in supercapacitors[J].
Accounts Chem. Res., 2015, 48(6):1666-1675.
doi:10.1021/acs.accounts.5b00117
|
[4] |
LIU M, ZHANG R, CHEN W. Graphene-supported nanoelectrocatalysts for fuel cells:synthesis, properties, and applications[J].
Chem. Rev., 2014, 114(10):5117-5160.
doi:10.1021/cr400523y
|
[5] |
BONACCORSO F, SUN Z, HASAN T,
et al.. Graphene photonics and optoelectronics[J].
Nat. Photonics, 2010, 4(9):611-622.
doi:10.1038/nphoton.2010.186
|
[6] |
李正顺, 王岩, 王雷.Fe
3+对石墨烯氧化物荧光淬灭机理的研究[J].中国光学, 2016, 9(5):569-578.
//www.illord.com/CN/abstract/abstract9449.shtml
LI ZH SH, WANG Y, WANG L. Fluorescence quenching mechanism of graphene oxide by Fe
3+[J].
Chinese Optic, 2016, 9(5):569-578.(in Chinese)
//www.illord.com/CN/abstract/abstract9449.shtml
|
[7] |
万吉祥, 陈小源, 王聪.荧光石墨烯量子点的制备及其荧光机理分析[J].功能材料, 2017, 48(8):8024-8031.
http://cdmd.cnki.com.cn/Article/CDMD-10280-1014008049.htm
WAN J X, CHEN X Y, WANG C. Synthesis and photoluminescence mechanism of graphene quantum dots[J].
Journal of Functional Materials, 2017, 48(8):8024-8031.(in Chinese)
http://cdmd.cnki.com.cn/Article/CDMD-10280-1014008049.htm
|
[8] |
俞文英, 余陈欢, 方杰, 等.氧化石墨烯纳米载体的生物相容性研究进展[J].中国现代应用药学, 2017, 34(5):777-782.
http://www.cnki.com.cn/Article/CJFDTotal-KXTB201420004.htm
YU W Y, YU C H, FANG J,
et al.. Research progress on biocompatibility of graphene oxide as a nanocarrier[J].
Chinese Journal of Modern Applied Pharmacy, 2017, 34(5):777-782.(in Chinese)
http://www.cnki.com.cn/Article/CJFDTotal-KXTB201420004.htm
|
[9] |
禚洪梅.尺寸均一的氧化石墨烯制备综述[J].轻工科技, 2017, 33(3):39-40+44.
http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GNCL201010003059.htm
GAO H M. Preparation of graphene oxide with uniform size[J].
Light Industry Science and Technology, 2017, 33(3):39-40+44.(in Chinese)
http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GNCL201010003059.htm
|
[10] |
李绍娟, 甘胜, 沐浩然.石墨烯光电子器件的应用研究进展[J].新型炭材料, 2014, 29(5):329-356.
http://mall.cnki.net/magazine/Article/XTCL201405001.htm
LI SH J, GAN SH, MU H R. Research progress in graphene use in photonic and optoelectronic devices[J].
New Carbon Materials, 2014, 29(5):329-356.(in Chinese)
http://mall.cnki.net/magazine/Article/XTCL201405001.htm
|
[11] |
STANKOVICH S, DIKIN D A, DOMMETT G H B,
et al.. Graphene-based composite materials[J].
Nature, 2006, 442(7100):282-286.
doi:10.1038/nature04969
|
[12] |
KIM J, COTE L J, HUANG J X. Two dimensional soft material:new faces of graphene oxide[J].
Accounts Chem. Res., 2012, 45(8):1356-1364.
doi:10.1021/ar300047s
|
[13] |
邓尧, 黄肖容, 邬晓龄.氧化石墨烯复合材料的研究进展[J].材料导报, 2012, 26(15):84-87.
doi:10.3969/j.issn.1005-023X.2012.15.016
DENG Y, HUANG X R, WU X L. Review on graphene oxide composites[J].
Materials Review, 2012, 26(15):84-87.(in Chinese)
doi:10.3969/j.issn.1005-023X.2012.15.016
|
[14] |
LI D, MULLER M B, GILJE S,
et al.. Processable aqueous dispersions of graphene nanosheets[J].
Nat. Nanotechnol, 2008, 3(2):101-105.
doi:10.1038/nnano.2007.451
|
[15] |
LU C H, YANG H H, ZHU C L,
et al.. A Graphene platform for sensing biomolecules[J].
Angew Chem. Int. Edit., 2009, 48(26):4785-4787.
doi:10.1002/anie.v48:26
|
[16] |
SWATHI R S, SEBASTIAN K L. Resonance energy transfer from a dye molecule to graphene[J].
Journal of Chemical Physics, 2008, 129(5):.
http://cn.bing.com/academic/profile?id=cef32be6e31e0ceda6edab3ee31b6140&encoded=0&v=paper_preview&mkt=zh-cn
|
[17] |
SWATHI R S, SEBASTIAN K L. Long range resonance energy transfer from a dye molecule to graphene has (distance)
(-4)dependence[J].
The Journal of Chemical Physics, 2009, 130(8):086101.
doi:10.1063/1.3077292
|
[18] |
PEI H, LI J, LV M,
et al.. A Graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers[J].
J. Am. Chem. Soc., 2012, 134(33):13843-13849.
doi:10.1021/ja305814u
|
[19] |
DONG H F, GAO W C, YAN F,
et al.. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules[J].
Anal. Chem., 2010, 82(13):5511-5517.
doi:10.1021/ac100852z
|
[20] |
ZHANG C L, YUAN Y X, ZHANG S M,
et al.. Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide[J].
Angew Chem. Int. Edit., 2011, 50(30):6851-6854.
doi:10.1002/anie.201100769
|
[21] |
LIU X Q, WANG F, AIZEN R,
et al.. Graphene oxide/nucleic-acid-stabilized silver nanoclusters:functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs[J].
J. Am. Chem. Soc., 2013, 135(32):11832-11839.
doi:10.1021/ja403485r
|
[22] |
BALAPANURU J, YANG J X, XIAO S,
et al.. A Graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties[J].
Angew Chem. Int. Edit., 2010, 49(37):6549-6553.
doi:10.1002/anie.201001004
|
[23] |
WEN Y, PENG C, LI D,
et al.. Metal ion-modulated graphene-DNAzyme interactions:design of a nanoprobe for fluorescent detection of lead(Ⅱ) ions with high sensitivity, selectivity and tunable dynamic range[J].
Chem. Commun.(Camb),2011, 47(22):6278-6280.
doi:10.1039/c1cc11486g
|
[24] |
LIU J, WANG C, JIANG Y,
et al.. Graphene signal amplification for sensitive and real-time fluorescence anisotropy detection of small molecules[J].
Anal. Chem., 2013, 85(3):1424-1430.
doi:10.1021/ac3023982
|
[25] |
JANG H, RYOO S R, KIM Y K,
et al.. Discovery of HepatitisC Virus NS3 helicase inhibitors by a multiplexed, high-throughput helicase activity assay based on graphene oxide[J].
Angew Chem. Int. Edit., 2013, 52(8):2340-2344.
doi:10.1002/anie.201209222
|
[26] |
LIU B W, SUN Z Y, ZHANG X,
et al.. Mechanisms of DNA sensing on graphene oxide[J].
Anal. Chem., 2013, 85(16):7987-7993.
doi:10.1021/ac401845p
|
[27] |
CAO L, MEZIANI M J, SAHU S,
et al.. Photoluminescence properties of graphene versus other carbon nanomaterials[J].
Accounts Chem. Res., 2013, 46(1):171-180.
doi:10.1021/ar300128j
|
[28] |
HUANG H M, LI Z B, SHE J C,
et al.. Oxygen density dependent band gap of reduced graphene oxide[J].
J. Appl. Phys., 2012, 111(5):.
http://cn.bing.com/academic/profile?id=e208eb95478337777ad74170e72e707a&encoded=0&v=paper_preview&mkt=zh-cn
|
[29] |
PAL S K. Versatile photoluminescence from graphene and its derivatives[J].
Carbon, 2015, 88:86-112.
doi:10.1016/j.carbon.2015.02.035
|
[30] |
HONG G S, LEE J C, ROBINSON J T,
et al.. Multifunctional in vivo vascular imaging using near-infrared Ⅱ fluorescence[J].
Nat. Med., 2012, 18(12):1841-1846.
doi:10.1038/nm.2995
|
[31] |
SUN X M, LIU Z, WELSHER K,
et al.. Nano-graphene oxide for cellular imaging and drug delivery[J].
Nano Res., 2008, 1(3):203-212.
doi:10.1007/s12274-008-8021-8
|
[32] |
ZHANG M F, OKAZAKI T, ⅡZUMI Y,
et al.. Preparation of small-sized graphene oxide sheets and their biological applications[J].
J. Mater Chem. B, 2016, 4(1):121-127.
doi:10.1039/C5TB01800E
|
[33] |
LUO Z T, VORA P M, MELE E J,
et al.. Photoluminescence and band gap modulation in graphene oxide[J].
Appl. Phys. Lett., 2009, 94(11).
http://cn.bing.com/academic/profile?id=c099499526b3e0d32b66ea6a9b8ff85e&encoded=0&v=paper_preview&mkt=zh-cn
|
[34] |
CHEN J L, YAN X P. Ionic strength and pH reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular pH[J].
Chem. Commun., 2011, 47(11):3135-3137.
doi:10.1039/c0cc03999c
|
[35] |
SHANG J Z, MA L, LI J W,
et al.. The origin of fluorescence from graphene oxide[J].
Sci. Rep-Uk, 2012, 2.
http://cn.bing.com/academic/profile?id=489add63d5b90c3eaecf56cdf17c8226&encoded=0&v=paper_preview&mkt=zh-cn
|
[36] |
GOKUS T, NAIR R R, BONETTI A,
et al.. Making graphene luminescent by oxygen plasma treatment[J].
ACS Nano, 2009, 3(12):3963-3968.
doi:10.1021/nn9012753
|
[37] |
MEI Q S, ZHANG K, GUAN G J,
et al.. Highly efficient photoluminescent graphene oxide with tunable surface properties[J].
Chem. Commun., 2010, 46(39):7319-7321.
doi:10.1039/c0cc02374d
|
[38] |
ZHANG K, YANG L, ZHU H J,
et al.. Selective visual detection of trace trinitrotoluene residues based on dual-color fluorescence of graphene oxide-nanocrystals hybrid probe[J].
Analyst, 2014, 139(10):2379-2385.
doi:10.1039/C3AN02380J
|
[39] |
MEI Q S, JIANG C L, GUAN G J,
et al.. Fluorescent graphene oxide logic gates for discrimination of iron(3+) and iron(2+) in living cells by imaging[J].
Chem. Commun., 2012, 48(60):7468-7470.
doi:10.1039/c2cc31992f
|
[40] |
CHIEN C T, LI S S, LAI W J,
et al.. Tunable photoluminescence from graphene oxide[J].
Angew Chem. Int. Edit., 2012, 51(27):6662-6666.
doi:10.1002/anie.201200474
|
[41] |
EXARHOS A L, TURK M E, KIKKAWA J M. Ultrafast spectral migration of photoluminescence in graphene oxide[J].
Nano Lett., 2013, 13(2):344-349.
doi:10.1021/nl302624p
|
[42] |
MCDONALD M P, ELTOM A, VIETMEYER F,
et al.. Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics[J].
Nano Lett., 2013, 13(12):5777-5784.
doi:10.1021/nl402057j
|
[43] |
EDA G, LIN Y Y, MATTEVI C,
et al.. Blue photoluminescence from chemically derived graphene oxide[J].
Adv. Mater., 2010, 22(4):505.
doi:10.1002/adma.v22:4
|
[44] |
GALANDE C, MOHITE A D, NAUMOV A V,
et al.. Quasi-molecular fluorescence from graphene oxide[J].
Sci. Rep-Uk, 2011, 1.
http://cn.bing.com/academic/profile?id=e68de853c142a648f7bc195b6e7aee69&encoded=0&v=paper_preview&mkt=zh-cn
|
[45] |
CUSHING S K, LI M, HUANG F Q,
et al.. Origin of strong excitation wavelength dependent fluorescence of graphene oxide[J].
ACS Nano., 2014, 8(1):1002-1013.
doi:10.1021/nn405843d
|
[46] |
THOMAS H R, VALLES C, YOUNG R J,
et al.. Identifying the fluorescence of graphene oxide[J].
J. Mater. Chem. C, 2013, 1(2):338-342.
doi:10.1039/C2TC00234E
|
[47] |
ROURKE J P, PANDEY P A, MOORE J J,
et al.. The real graphene oxide revealed:stripping the oxidative debris from the graphene-like sheets[J].
Angew. Chem. Int. Ed., 2011, 50(14):3173-3177.
doi:10.1002/anie.201007520
|
[48] |
NAUMOV A, GROTE F, OVERGAARD M,
et al.. Graphene oxide:a one-versus two-component material[J].
J. Am. Chem. Soc., 2016, 138(36):11445-11448.
doi:10.1021/jacs.6b05928
|
[49] |
TSUCHIYA T, TERABE K, AONO M. In situ and non-volatile bandgap tuning of multilayer graphene oxide in an all-solid-state electric double-layer transistor[J].
Adv. Mater., 2014, 26(7):1087-1091.
doi:10.1002/adma.201304770
|
[50] |
TSUCHIYA T, TSURUOKA T, TERABE K,
et al.. In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide[J].
ACS Nano., 2015, 9(2):2102-2110.
doi:10.1021/nn507363g
|
[51] |
CHIEN C T, LI S S, LAI W J,
et al.. Tunable photoluminescence from graphene oxide[J].
Angew Chem. Int. Edit., 2012, 51(27):6662-6666.
doi:10.1002/anie.201200474
|
[52] |
MAITI R, MIDYA A, NARAYANA C,
et al.. Tunable optical properties of graphene oxide by tailoring the oxygen functionalities using infrared irradiation[J].
Nanotechnology, 2014, 25(49):704.
http://cn.bing.com/academic/profile?id=800c8ffe5d6603e977c6bc6183b7f5d3&encoded=0&v=paper_preview&mkt=zh-cn
|
[53] |
MEI Q S, CHEN J, ZHAO J,
et al.. Atomic oxygen tailored graphene oxide nanosheets emissions for multicolor cellular imaging[J].
ACS Appl. Mater Inter., 2016, 8(11):7390-7395.
doi:10.1021/acsami.6b00791
|
[54] |
GAN Z X, XIONG S J, WU X L,
et al.. Mn
2+-bonded reduced graphene oxide with strong radiative recombination in broad visible range caused by resonant energy transfer[J].
Nano Lett., 2011, 11(9):3951-3956.
doi:10.1021/nl202240s
|
[55] |
PENG C, HU W B, ZHOU Y T,
et al.. Intracellular imaging with a graphene-based fluorescent probe[J].
Small, 2010, 6(15):1686-1692.
doi:10.1002/smll.v6:15
|
[56] |
FARROW B, KAMAT P V. CdSe quantum dot sensitized solar cells. shuttling electrons through stacked carbon nanocups[J].
J. Am. Chem. Soc., 2009, 131(31):11124-11131.
doi:10.1021/ja903337c
|
[57] |
LI L L, LIU K P, YANG G H,
et al.. Fabrication of graphene-quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing[J].
Adv. Funct. Mater., 2011, 21(5):869-878.
doi:10.1002/adfm.201001550
|
[58] |
HU S H, CHEN Y W, HUNG W T,
et al.. Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ[J].
Adv. Mater., 2012, 24(13):1748-1754.
doi:10.1002/adma.201104070
|
[59] |
PAN D Y, ZHANG J C, LI Z,
et al.. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J].
Adv. Mater., 2010, 22(6):734-738.
doi:10.1002/adma.v22:6
|
[60] |
KIM S, HWANG S W, KIM M K,
et al.. Anomalous behaviors of visible luminescence from graphene quantum dots:interplay between size and shape[J].
ACS Nano., 2012, 6(9):8203-8208.
doi:10.1021/nn302878r
|
[61] |
SUN H J, WU L, GAO N,
et al.. Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application[J].
ACS Appl. Mater Inter., 2013, 5(3):1174-1179.
doi:10.1021/am3030849
|
[62] |
TETSUKA H, ASAHI R, NAGOYA A,
et al.. Optically tunable amino-functionalized graphene quantum dots[J].
Adv. Mater., 2012, 24(39):5333-5338.
doi:10.1002/adma.201201930
|
[63] |
JIN S H, KIM D H, JUN G H,
et al.. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups[J].
ACS Nano., 2013, 7(2):1239-1245.
doi:10.1021/nn304675g
|
[64] |
LINGAM K, PODILA R, QIAN H J,
et al.. Evidence for edge-state photoluminescence in graphene quantum dots[J].
Adv. Funct. Mater., 2013, 23(40):5062-5065.
doi:10.1002/adfm.v23.40
|
[65] |
ZHOU X J, ZHANG Y, WANG C,
et al.. Photo-fenton reaction of graphene oxide:a new strategy to prepare graphene quantum dots for DNA cleavage[J].
ACS Nano., 2012, 6(8):6592-6599.
doi:10.1021/nn301629v
|
[66] |
PENG J, GAO W, GUPTA B K,
et al.. Graphene quantum dots derived from carbon fibers[J].
Nano Lett., 2012, 12(2):844-849.
doi:10.1021/nl2038979
|
[67] |
YE R Q, XIANG C S, LIN J, PENG Z W,
et al.. Coal as an abundant source of graphene quantum dots[J].
Nat. Commun., 2013, 4.
http://cn.bing.com/academic/profile?id=0dc967d711ad69a64d268f96b2ee742a&encoded=0&v=paper_preview&mkt=zh-cn
|
[68] |
YE R Q, PENG Z W, METZGER A,
et al.. Bandgap engineering of coal-derived graphene quantum dots[J].
ACS Appl. Mater. Inter., 2015, 7(12):7041-7048.
doi:10.1021/acsami.5b01419
|
[69] |
LI Y, HU Y, ZHAO Y,
et al.. An Electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J].
Adv. Mater., 2011, 23(6):776-780.
doi:10.1002/adma.201003819
|
[70] |
LIU F, JANG M H, HA H D,
et al.. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots:origin of blue and green luminescence[J].
Adv. Mater., 2013, 25(27):3657-3662.
doi:10.1002/adma.v25.27
|
[71] |
YOON H, CHANG Y H, SONG S H,
et al.. Intrinsic photoluminescence emission from subdomained graphene quantum dots[J].
Adv. Mater., 2016, 28(26):5255-5261.
doi:10.1002/adma.201600616
|
[72] |
SHEN J H, ZHU Y H, CHEN C,
et al.. Facile preparation and upconversion luminescence of graphene quantum dots[J].
Chem. Commun., 2011, 47(9):2580-2582.
doi:10.1039/C0CC04812G
|
[73] |
ZHU S J, ZHANG J H, TANG S J,
et al.. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots:from fluorescence mechanism to up-conversion bioimaging applications[J].
Adv. Funct. Mater., 2012, 22(22):4732-4740.
doi:10.1002/adfm.v22.22
|
[74] |
TAN D Z, ZHOU S F, QIU J R. Comment on "upconversion and downconversion fluorescent graphene quantum dots:ultrasonic preparation and photocatalysis"[J].
ACS Nano, 2012, 6(8):6530-6531.
doi:10.1021/nn3016822
|
[75] |
GAN Z X, WU X L, ZHOU G X,
et al.. Is there real upconversion photoluminescence from graphene quantum dots[J].
Adv. Opt. Mater, 2013, 1(8):554-558.
doi:10.1002/adom.v1.8
|
[76] |
LI J L, BAO H C, HOU X L,
et al.. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy[J].
Angew Chem. Int. Edit., 2012, 51(8):1830-1834.
doi:10.1002/anie.v51.8
|
[77] |
QIAN J, WANG D, CAI F H,
et al.. Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging[J].
Angew Chem. Int. Edit., 2012, 51(42):10570-10575.
doi:10.1002/anie.201206107
|
[78] |
LIU Q, GUO B D, RAO Z Y,
et al.. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[J].
Nano Lett., 2013, 13(6):2436-2441.
doi:10.1021/nl400368v
|
[79] |
NAHAIN A A, LEE E J, JEONG H J. Photoresponsive fluorescent reduced graphene oxide by spiropyran conjugated hyaluronic acid for in vivo imaging and target delivery[J].
Biomacromolecules, 2013, 14:4082.
doi:10.1021/bm4012166
|
[80] |
NAHAIN A A, LEE J E, IN I. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots[J].
Mol. Pharmaceutics, 2013, 10:3736.
doi:10.1021/mp400219u
|
[81] |
GE J, LAN M, ZHOU B. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation[J].
Nat. Commun., 2014, 5:4596.
doi:10.1038/ncomms5596
|
[82] |
ZHENG T X, THAN A, ANANTHANARAYA A. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes[J].
ACS Nano, 2013, 7:6278.
doi:10.1021/nn4023137
|