Citation: | HAO Ya-ru, DENG Zhao-qi. High directional multi-beam organic laser[J].Chinese Optics, 2018, 11(4): 576-581.doi:10.3788/CO.20181104.0576 |
[1] |
FROLOV S V, VARDENY Z V, YOSHINO K. Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions[J].
Phys. Rev. B, 1988, 57:9141.
http://www.osti.gov/scitech/biblio/627813
|
[2] |
HIDE F, DIAZ-GARCIA M A, SCHWARTZ B J,
et al.. Semiconducting polymers:a new class of solid-state laser materials[J].
Science, 1996, 273:1833.
doi:10.1126/science.273.5283.1833
|
[3] |
刘启坤, 孔金霞, 朱凌妮, 等.电致发光用于大功率半导体 器失效模式分析[J].发光学报, 2018, 39(2):180-187.
http://www.opticsjournal.net/Articles/abstract?aid=OJ180314000103Xu1w4z
LIU Q K, KONG J X, ZHU L N,
et al.. Failure mode analysis of high-power laser diodes by electroluminescence[J].
Chinese Journal of Luminescence, 2018, 39(2):180-187.(in Chinese)
http://www.opticsjournal.net/Articles/abstract?aid=OJ180314000103Xu1w4z
|
[4] |
陈运达, 汪之国, 江奇渊, 等.非理想1/4波片对泵浦光偏振态的影响[J].中国光学, 2017, 10(2):226-233.
//www.illord.com/CN/abstract/abstract9475.shtml
CHEN Y D, WANG ZH G, JIANG Q Y,
et al.. Influence of nonideal 1/4 wave plate on pump light polarization[J].
Chinese Optics, 2017, 10(2):226-233.(in Chinese)
//www.illord.com/CN/abstract/abstract9475.shtml
|
[5] |
公爽, 田金荣, 李克轩, 等.新型二维材料在固体 器中的应用研究进展[J].中国光学, 2018, 11(1):18-30.
//www.illord.com/CN/abstract/abstract9547.shtml
GONG SH, TIAN J R, LI K X,
et al.. Advances in new two-dimensional materials and its application in solid-state lasers[J].
Chinese Optics, 2018, 11(1):18-30.(in Chinese)
//www.illord.com/CN/abstract/abstract9547.shtml
|
[6] |
FOZLOV V G K, BULOVIC V, BURROWS P E,
et al.. Laser action in organic semiconductor waveguide and doubleheterostructure devices[J].
Nature, 1997, 389:362.
doi:10.1038/38693
|
[7] |
TESSLER N, DENTON G J, FRIEND H,
et al.. Lasing from conjugated-polymer microcavities[J].
Nature, 1996, 382:695.
doi:10.1038/382695a0
|
[8] |
TURNBULL G A, ANDREW P, JORY M J,
et al.. Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser[J].
Phys. Rev. B, 2001, 64:125122.
doi:10.1103/PhysRevB.64.125122
|
[9] |
HOLZER W, PENZKOFER A, PERTSCH T,
et al.. Corrugated neat thin-film conjugated polymer distributed-feedback lasers[J].
Appl. Phys. B:Lasers Opt., 2002, 74:333.
doi:10.1007/s003400200821
|
[10] |
KARNUTSCH C, GYRTNER C, HAUG V,
et al.. Low threshold blue conjugated polymer lasers with first-and second-order distributed feedback[J].
Appl. Phys. Lett., 2006, 89:201108.
doi:10.1063/1.2390644
|
[11] |
HELIOTIS G, CHOULIS S A, ITSKOS G,
et al.. Low-threshold lasers based on a high-mobility semiconducting polymer[J].
Appl. Phys. Lett., 2006, 88:081104.
doi:10.1063/1.2178197
|
[12] |
LIU M H, LIU Y G, ZHANG G Y,
et al.. Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders[J].
J. Phys. D Appl. Phys., 2016, 49:465102.
doi:10.1088/0022-3727/49/46/465102
|
[13] |
KALLINGER CH, HILMER M, HAUGENEDER A,
et al.. A flexible conjugated polymer laser[J].
Adv. Mater., 1998, 10:920.
doi:10.1002/(ISSN)1521-4095
|
[14] |
SHERIDAN A K, TURNBULL G A, SAFONOV A N,
et al.. Tuneability of amplified spontaneous emission through control of the waveguide-mode structure[J].
Phys. Rev. B, 2000, 62:11930.
https://vdocuments.mx/documents/tuneability-of-amplified-spontaneous-emission-through-control-of-the-waveguide-mode.html
|
[15] |
JEON S, JEON Y M, KIM J W,
et al.. A blue organic emitting diode derived from new styrylamine type dopant materials[J].
Synthetic Metals, 2007, 157(13-15):558-563.
doi:10.1016/j.synthmet.2007.06.005
|