Volume 11Issue 6
Dec. 2018
Turn off MathJax
Article Contents
WEN Ya, WU Chun-ting, YUAN Ze-rui, GONG Liang-yu, JIN Guang-yong. Research progress of far-infrared solid-state lasers[J]. Chinese Optics, 2018, 11(6): 889-900. doi: 10.3788/CO.20181106.0889
Citation: WEN Ya, WU Chun-ting, YUAN Ze-rui, GONG Liang-yu, JIN Guang-yong. Research progress of far-infrared solid-state lasers[J].Chinese Optics, 2018, 11(6): 889-900.doi:10.3788/CO.20181106.0889

Research progress of far-infrared solid-state lasers

doi:10.3788/CO.20181106.0889
More Information
  • Corresponding author:JIN Guang-yong, E-mail:jgycust@163.com
  • Received Date:19 Jan 2018
  • Rev Recd Date:28 Feb 2018
  • Publish Date:01 Dec 2018
  • The wavelength range of 8-12 μm is defined as the long-wave infrared band, which opens a window for atmospheric transmission. The laser band has strong penetrating power for fog, smoke etc., and has important application prospects in the fields of laser photoelectric countermeasures, laser remote sensing, medical treatment, environmental monitoring and optical communication. In this paper, the commonly used 8-12 μm nonlinear frequency conversion crystal, and the research progress of far-infrared optical parametric oscillator based on nonlinear frequency conversion crystal are investigated. The nonlinear crystal and laser system which can realize the laser output of 8-12 μm band at home and abroad are systematically summarize. Through analysis and comparison, it is concluded that the maximum output energy obtained in the 8-12 μm band is in the order of mJ and the maximum power is in the order of W. However, the technology in China is currently lagging behind in the world. The main reason is that the high-frequency, high-power pulse 1-3 μm pump source technology is immature and the development of high-performance nonlinear crystal materials is weak. Due to the slow research progress in the field of long-wave far-infrared solid-state lasers in China, the development of large-size, high-quality far-infrared laser crystals and far-infrared high-power lasers with longer output wavelengths has become one of the future development directions.

  • loading
  • [1]
    HERBST R L, BYER R L. Efficient parametric mixing in CdSe[J]. Appl.Phy. Lett., 1971, 19(12):527-530. doi:10.1063/1.1653800
    [2]
    DAS S, BHAR G C, GANGOPADHYAY S, et al.. Linear and nonlinear optical properties of ZnGeP 2crystal for infrared laser device applications:revisited[J]. Applied Optics, 2003, 42(21):4335-4340. doi:10.1364/AO.42.004335
    [3]
    李海速, 刘在洲, 郑建奎, 等.高功率中红外MgO:PPLN光参量振荡器[J].光学与光电技术, 2015, 13(1):64-67. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201501015

    LIU H S, LIU Z Z, ZHENG J K, et al.. High power mid-infrared MgO:PPLN optical parametric oscillator[J]. Optics& Optoelectronic Technology, 2015, 13(1):64-67.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201501015
    [4]
    王岩, 杨小虎, 王金玲, 等.空间遥感光谱仪器光学性能地面检测系统[J].液晶与显示, 2017, 32(3):206-212. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201703007

    WANG Y, YANG X H, WANG J L, et al.. Ground testing system for detecting optical performance of space remote sensing spectrometer[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(3):206-212.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201703007
    [5]
    BJORKHOLM J E. Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators[J]. IEEE Journal of Quantum Electronics, 1971, 7(3):109-118. doi:10.1109/JQE.1971.1076610
    [6]
    王君立, 尹福昌, 宋正勋, 等.高稳定输出功率的全固态 器[J].发光学报, 2011, 32(8):830-833. http://d.old.wanfangdata.com.cn/Periodical/fgxb201108016

    WANG J L, YIN F CH, SONG ZH X, et al.. An all-solid-state laser with high stability output power[J]. Chinese Journal of Luminescence, 2011, 32(8):830-833.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201108016
    [7]
    肖庆华, 林家娟, 刘强, 等.914 nm LD泵浦的基模振荡器设计[J].光学与光电技术, 2015, 13(5):38-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxygdjs201505009

    XIAO Q H, LIN J J, LIU Q, et al.. Design of a fundamental mode oscillator pumped by 914 nm LD[J]. Optics& Optoelectronic Technology, 2015, 13(5):38-40.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxygdjs201505009
    [8]
    YAO B Q, LI G, MENG P B, et al.. High power diode-pumped continuous wave and Q-switch operation of Tm, Ho:YVO 4, laser[J]. Laser Physics Letters, 2010, 7(12):857-861. doi:10.1002/lapl.v7.12
    [9]
    FUKUMOTO J M. Three-stage optical parametric oscillator conversion from 1μm to the 8-10μm region[J]. Proc. of ASSL, 2002, 68:558-562.
    [10]
    ABDI F, AILLERIE M, FONTANA M D, et al.. Study of contributions to temperature dependence of the phase shift in an electro-optic crystal[J]. Optical and Quantum Electronics, 1997, 29(4):441-450.(in Chinese) doi:10.1023/A:1018547331718
    [11]
    岱钦, 毛有明, 吴凯旋, 等.脉冲 测距中高速精密时间间隔测量研究[J].液晶与显示, 2015, 30(1):83-87. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201501013

    DAI Q, MAO Y M, WU K X, et al.. High speed and high precision time-interval measurement system in pulsed laser ranging[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(1):83-87.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201501013
    [12]
    李玉瑶, 王菲, 焦正超, 等.高效率LD端面抽运准连续355 nm 器[J].发光学报, 2014, 35(3):332-336. http://d.old.wanfangdata.com.cn/Periodical/fgxb201403012

    LI Y Y, WANG F, JIAO ZH CH, et al.. High efficient LD end-pumped QCW 355 nm laser[J]. Chinese Journal of Luminescence, 2014, 35(3):332-336.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201403012
    [13]
    岱钦, 史瑞新, 崔建丰, 等.脉冲LD泵浦电光调Q深紫外 器[J].发光学报, 2016, 37(4):463-466. http://d.old.wanfangdata.com.cn/Periodical/fgxb201604014

    DAI Q, SHI R X, CUI J F, et al.. Pulse LD pumped EO-Q switched DUV laser[J]. Chinese Journal of Luminescence, 2016, 37(4):463-466.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201604014
    [14]
    彭超, 刘学胜, 司汉英, 等.多波长半导体 阵列端泵Nd:YAG脉冲 器[J].发光学报, 2018, 39(2):162-168. http://d.old.wanfangdata.com.cn/Periodical/fgxb201802009

    PENG CH, LIU X SH, SI H Y, et al.. Multi-color laser diode array end-pump Nd:YAG pulsed laser[J]. Chinese Journal of Luminescence, 2018, 39(2):162-168.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201802009
    [15]
    刘学胜, 董剑, 徐爱东, 等.双程放大740 mJ TEC冷却LD泵浦Nd:YAG 器[J].发光学报, 2018, 39(7):991-996. http://d.old.wanfangdata.com.cn/Periodical/fgxb201807015

    LIU X SH, DONG J, XU A D. Two-pass amplifier 740 mJ diode-pumped Nd:YAG laser with thermoelectric cooler[J]. Chinese Journal of Luminescence, 2018, 39(7):991-996.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201807015
    [16]
    欧阳爱国, 张宇, 程梦杰, 等.中红外光谱技术对乙醇汽油乙醇含量的检测[J].中国光学, 2017, 10(6):752-759. //www.illord.com/CN/abstract/abstract9536.shtml

    OUYANG A G, ZHANG Y, CHENG M J, et al.. Determination of the content of ethanol in ethanol gasoline using mid-infrared spectroscopy[J]. Chinese Journal of Optics, 2017, 10(6):752-759.(in Chinese) //www.illord.com/CN/abstract/abstract9536.shtml
    [17]
    ELSAESSER T, SEILMEIER A, KAISER W, et al.. Parametric generation of tunable picosecond pulses in the medium infrared using AgGaS 2crystals[J]. Applied Physics Letters, 1984, 44(4):383-385. doi:10.1063/1.94782
    [18]
    FUKUMOTO J M. Three-stage optical parametric oscillator conversion from 1μm to the 8-12μm Region[C]. Trends in Optics and Photonics Series, 2002.
    [19]
    ALLIK T H. Recent advances in continuously tunable 8-12μm radiation using optical parametric oscillators[J]. Proceedings of SPIE, 1997, 3082:54-64. doi:10.1117/12.280935
    [20]
    SNELL K J. Efficient optical parametric oscillator with photon recycling: EP, US6985282[P]. 2006.
    [21]
    FINSTERBUSCH K, BAYER A, ZACHARIAS H. Tunable, narrow-band picosecond radiation in the mid-infrared by difference frequency mixing in GaSe and CdSe[J]. Applied Physics B, 2004, 79(4):457-462. doi:10.1007/s00340-004-1581-8
    [22]
    DAVID N N P D. Nonlinear Optical Crystals: A Complete Survey[M]. Springer New York, 2005.
    [23]
    ALLIK T H, CHANDRA S, RINES D M, et al.. Tunable 7-12μm optical parametric oscillator using a Cr, Er:YSGG laser to pump CdSe and ZnGeP 2crystals[J]. Opt. Lett., 1997, 22(9):597-599. doi:10.1364/OL.22.000597
    [24]
    ISYANOVA Y, DERGACHEV A, WELFORD D, et al.. Multi-wavelength, 1.5-10μm tunable, tandem OPO[C]. Proc. of ASSL, 1999, 26: WB4.
    [25]
    CARRIG T, RAWLE C B, MCKINNIE I T, et al.. Dual-band Cr: ZnSe laser pump-tuned OPOs[C]. Nonlinear Optics: Materials, Fundamentals and Applications, OSA Trends in Optics and Photonics(Optical Society of America, 2002).
    [26]
    WATSON M A, O'CONNOR M V, LLOYD P S, et al.. Extended operation of synchronously pumped optical parametric oscillators to longer idler wavelengths[J]. Optics Letters, 2002, 27(23):2106-2108. doi:10.1364/OL.27.002106
    [27]
    WATSON M A, O'CONNOR M V, SHEPHERD D P, et al.. Synchronously pumped CdSe optical parametric oscillator in the 9-10 microm region.[J]. Optics Letters, 2003, 28(20):1957-1959. doi:10.1364/OL.28.001957
    [28]
    MANI A A, PEREMANS A, GEWIRTH A A, et al.. Picosecond laser for performance of efficient nonlinear spectroscopy from 10-21μm[J]. Optics Letters, 2004, 29(29):274-276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1cfd4a87e2ab11ba22b89000676574a6
    [29]
    SHORI R K. Recent developments in scaling output energy from erbium-based lasers and their uses as pump sources for NMR & LWIR OPOs[C]. 17 thAnnual Meeting of the IEEE-lasers-and-Electro-Optics-Society, Rio Grande, PR, 2004: 805-806.
    [30]
    GODARD A, RAYBAUT M, LAMBERT O, et al.. Cross-resonant optical parametric oscillators:study of and application to difference-frequency generation[J]. Journal of the Optical Society of America B, 2005, 22(9):1966-1978. doi:10.1364/JOSAB.22.001966
    [31]
    ZAKEL A, WAGNER G J, ALFORD W J, et al.. High-power, rapidly-tunable dual-band CdSe optical parametric oscillator[C]. Proc. of ASSP, 2005: 433-437.
    [32]
    YAO B Q, LI G, ZHU G L, et al.. Comparative investigation of long-wave infrared generation based on ZnGeP 2and CdSe optical parametric oscillators[J]. Chinese Physics B, 2012, 21(3):262-267. http://www.cqvip.com/QK/85823A/201203/41287224.html
    [33]
    YUAN J H, DUAN X M, YAO B Q, et al.. Tunable 10-11μm CdSe optical parametric oscillator pumped by a 2.1-μm Ho:YAG laser[J]. Applied Physics B, 2016, 122(7):1-4.
    [34]
    VODOPYANOV K L. Traveling wave mid-IR ZnGeP 2and GaSe optical parametric generators and their spectroscopic applications[C]. Photonics West. International Society for Optics and Photonics, 1995.
    [35]
    VODOPYANOV K L, GANIKHANOV F, MAFFETONE J P, et al.. ZnGeP 2optical parametric oscillator with 3.8-12.4μm tunability[J]. Opt. Lett., 2000, 25(11):841-843. doi:10.1364/OL.25.000841
    [36]
    VODOPYANOV K L, GANIKHANOV F, MAFFETONE J P, et al.. ZGP OPO with a 3.8-12.4μm tunability[C]. Lasers and Electro-Optics. IEEE Xplore, 2000: 14-15.
    [37]
    VODOPYANOV K L, SCHUNEMANN P G. Broadly tunable noncritically phase-matched ZnGeP 2optical parametric oscillator with a 2-μJ pump threshold[J]. Opt. Lett., 2003, 28(6):441-443. doi:10.1364/OL.28.000441
    [38]
    BAI Y, YU J, BARNES N P, et al.. Tunable mid-infrared coherent source for lidar:CW OPO[J]. Proc Spie, 2003, 5154:46-51. doi:10.1117/12.509373
    [39]
    HAIDAR S, NIWA E, MASUMOTO K, et al.. Temperature tuning of 5-12μm by difference frequency mixing of OPO outputs in a AgGaS 2crystal[J]. Journal of Physics D-Applied Physics, 2003, 36(9):1071-1074. doi:10.1088/0022-3727/36/9/304
    [40]
    HAIDAR S, MIYAMOTO K, ITO H. Generation of tunable Mid-IR (5.5-9.3μm) from a 2-μm pumped ZnGeP 2optical parametric oscillator[J]. Optics Communications, 2004, 241(1-3):173-178. doi:10.1016/j.optcom.2004.06.065
    [41]
    HAIDAR S, SASAKI Y, ITO H, et al.. Electro-optic tuning of a periodically poled LiNbO 3optical parametric oscillator and mixing its output waves to generate mid-IR tunable from 9.4-10.5μm[J]. Optics Communications, 2004, 229(1-6):325-330. doi:10.1016/j.optcom.2003.10.034
    [42]
    LIPPERT E, RUSTAD G, ARISHOLM G, et al.. High power and efficient long wave IR ZnGeP 2parametric oscillator[J]. Optics Express, 2008, 16(18):13878-13884. doi:10.1364/OE.16.013878
    [43]
    LIPPERT E, FONNUM H, STENERSEN K. High power multi-wavelength infrared source[J]. Proc. of SPIE, 2010, 7836:78360D-1. doi:10.1117/12.882094
    [44]
    巩马理, 韩凯.10.6微米 频率上转换研究[J]. 杂志, 1986(1):8-10. http://www.cqvip.com/Main/Detail.aspx?id=21199179

    GONG M L, HAN K. Investigation on the frequency up-convertion of 10.6μm laser[J]. Laser Jouranal, 1986(1):8-10.(in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=21199179
    [45]
    KAI Z, J S L, D G X, et al.. Tunable and coherent nanosecond 7.2-12.2μm mid-infrared generation based on difference frequency mixing in ZnGeP 2crystal[J]. Optoelectronics Letters, 2010, 6(3):179-182. doi:10.1007/s11801-010-9267-4
    [46]
    STOEPPLER G, THILMANN N, EICHHORN M, et al.. Mid-infrared cascaded parametric source in 6μm region for medical applications[C]. Conference on Lasers and Electro-Optics. IEEE, 2013: 1-2.
    [47]
    YU K, LIANG Z, YAN X. Experimental studies on beam quality-improving of 8μm ZGP optical parametric oscillator[C] International Conference on Optoelectronics and Microelectronics. IEEE, 2016: 34-37.
    [48]
    QIAN C P, SHEN Y J, YAO B Q, et al.. High power far-infrared ZGP OPO laser[C]. Lasers and Electro-Optics. IEEE, 2016: ATh3J.6.
    [49]
    马力, 李勇, 左腾, 等. 1.3~5μm宽波段红外成像光学系统设计[J].光学与光电技术, 2017, 15(6):73-76. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201706014

    MA L, LI Y, ZUO T, et al.. Design of 1.3~5μm wide band infrared imaging optical system[J]. Optics& Optoelectronic Technology, 2017, 15(6):73-76.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201706014
    [50]
    刘峰奇.量子级联 器:从中红外到太赫兹[J].光学与光电技术, 2017, 15(5):1-5. http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201205011

    LIU F Q. Quantum cascade lasers:from mid-infrared to terahertz[J]. Optics& Optoelectronic Technology, 2017, 15(5):1-5.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201205011
    [51]
    RAFFY J, DEBUISSCHERT T, POCHOLLE J P, et al.. AgGaSe 2OPO pumped by a LiNbO 3OPO[C]. Optical Society of America Advanced Solid State Lasers, 1993.
    [52]
    BUDNI P A, KNIGHTS M G, SCHEPLER K L, et al.. Kilohertz AgGaSe 2optical parametric oscillator pumped at 2μm[J]. Optics Letters, 1993, 18(13):1068-1070. doi:10.1364/OL.18.001068
    [53]
    CHANDRA S, ALLIK T H, CATELLA G, et al. Continuously tunable, 6-14μm silver-gallium selenide optical parametric oscillator pumped at 1.57μm[J]. Applied Physics Letters, 1997, 71(5):584-586. doi:10.1063/1.119920
    [54]
    ALLIK T H, CHANDRA S, RINES D M, et al.. Tunable 7-12μm optical parametric oscillator using a Cr, Er:YSGG laser to pump CdSe and ZnGeP 2crystals[J]. Opt. Lett., 1997, 22(9):597-599. doi:10.1364/OL.22.000597
    [55]
    SCHUNERMANN P G. Recent advances in nonlinear materials for 5-20μm wavelength generation[C]. Lasers and Electro-Optics, IEEE, 2000: 353-354.
    [56]
    KATO K, TAKAOKA E, UMEMURA N, et al.. Temperature-tuned type-290° phase-matched SHG of CO 2laser radiation at 9.2714-10.5910μm in CdGe(As 1-xP x) 2[J]. Filtration Industry Analyst, 2000.
    [57]
    EHRLICH Y, FASTIG S, PEARL S. Compact high-performance tandem optical parametric oscillator for the 8-12μm band[J]. Proceedings of SPIE, 2001, 4484:311-317. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026430691
    [58]
    HAIDAR, NIWA E, MASUMOTO K, ITO H. Temperature tuning of 5-12μm by difference frequency mixing of OPO outputs in a AgGaS 2crystal[J]. J. Phys. D:Appl. Phys., 2003, 36(9):1071-1074 doi:10.1088/0022-3727/36/9/304
    [59]
    BADIKOV VV. Nonlinear frequency generation and conversion: materials, devices, and Applications Ⅱ[C]. Proceedings of SPIE, 2003, 4972: 139-144
    [60]
    HAIDAR S, SASAKI Y, NIWA E, et al. Electro-optic tuning of a periodically poled LiNbO 3optical parametric oscillator and mixing its output waves to generate mid-IR tunable from 9.4-10.5μm[J]. Optics Communications, 2004, 229(1-6):325-330 doi:10.1016/j.optcom.2003.10.034
    [61]
    BADIKOV V V. Study of nonlinear-optical characteristics of AgGa 1-xIn xSe 2crystals[J]. Quantum Electronics, 2005, 35(3):263-267. doi:10.1070/QE2005v035n03ABEH002795
    [62]
    吴海信, 张维, 石奇, 等.红外非线性晶体材料AgGa 1-xIn xSe 2的生长和性能表征[J].人工晶体学报, 2005, 34(3):408-411. doi:10.3969/j.issn.1000-985X.2005.03.006

    WU H X, ZHANG W, SHI Q, et al.. Growth and characterization of IR nonlinear AgGa 1-xIn xSe 2crystals[J]. Journal of Synthetic Crystals, 2005, 34(3):408-411.(in Chinese) doi:10.3969/j.issn.1000-985X.2005.03.006
    [63]
    VAICIKAUSKAS V, KUPRIONIS Z, KAUCIKAS M, et al.. Mid-infrared all solid state DIAL for remote sensing of hazardous chemical agents[C]. Conference on Laser Radar Technology and Applications XI, SPIE, 2006, 6214: E2140~E2140.
    [64]
    吴海信, 石奇, 张维, 等.新型AgGa 1-xIn xSe 2晶体用于CO 2 倍频研究[J].人工晶体学报, 2006, 35(1):85-90. doi:10.3969/j.issn.1000-985X.2006.01.019

    WU H X, SHI Q, ZHANG W, et al.. Study on frequency doubling of CO 2laser radiation in new AgGa 1-xIn xSe 2crystals[J]. Journal of Synthetic Crystals, 2006, 35(1):85-90.(in Chinese) doi:10.3969/j.issn.1000-985X.2006.01.019
    [65]
    BAI Y, YU J, BARNES N P, et al. Synthesis of AgGa 1-xIn xSe 2polycrystalline materials[J]. Journal of Rare Earth, 2006, 24(z1):269-271. http://www.cqvip.com/qk/84120x/2006z1/1000213022.html
    [66]
    VIJAYAKUMAR P, BABU G A, RAMASAMY P. Growth and physical characterization of AgGa 1-xIn xSe 2, ( x=0.5) single crystals grown by modified vertical Bridgman method[J]. Journal of Crystal Growth, 2014, 389(3):139-143. http://www.sciencedirect.com/science/article/pii/S0022024813008580
    [67]
    姬广举, 齐迹, 靳添博, 等.掺杂晶体AgGa (1-x)In xSe 2的群速失配对频率转换的影响[J].哈尔滨理工大学学报, 2008, 13(2):112-115. doi:10.3969/j.issn.1007-2683.2008.02.031

    JI G J, QI J, JIN T B, et al.. Influence of group velocity mismatch on the frequency conversion of AgGa (1-x)In xSe 2[J]. Journal Harbin Univ.Sci& Tech., 2008, 13(2):112-115.(in Chinese) doi:10.3969/j.issn.1007-2683.2008.02.031
    [68]
    白云昌, 孙峰, 刘在洲, 等. Ho:YAG 泵浦的磷锗锌光参量振荡器[J].光学与光电技术, 2016, 14(4):44-47. http://d.old.wanfangdata.com.cn/Periodical/gncl201217004

    BAI Y CH, SUN F, LIU Z ZH, et al.. ZnGeP 2optical parametric oscillator pumped by Ho:YAG laser[J]. Optics& Optoelectronic Technology, 2016, 14(4):44-47.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gncl201217004
    [69]
    王玉坤, 贾娜, 张锐. 通信成像光斑处理方法研究[J].液晶与显示, 2017, 32(9):736-740. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201709010

    WANG Y K, JIA N, ZHANG R, et al.. Laser communication spots imaging process method[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(9):736-740.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201709010
    [70]
    杨成龙, 颜昌翔, 杨宇飞.星间 通信终端光学天线的隔离度[J].中国光学, 2017, 10(4):462-468. //www.illord.com/CN/abstract/abstract9443.shtml

    YANG CH L, YAN CH X, YANG Y F, et al.. Isolation of optical antenna of inter-satellites laser communication terminals[J]. Chinese Optics, 2017, 10(4):462-468.(in Chinese) //www.illord.com/CN/abstract/abstract9443.shtml
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)/Tables(1)

    Article views(3277) PDF downloads(341) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map