Citation: | ZHANG Meng-jiao, CAI Yi, JIANG Feng, ZHONG Hai-zheng, WANG Ling-xue. Silicon-based ultraviolet photodetection: progress and prospects[J]. Chinese Optics, 2019, 12(1): 19-37. doi: 10.3788/CO.20191201.0019 |
[1] |
MENDE S B, HEETDERKS H, FREY H U, et al.. Far ultraviolet imaging from the IMAGE spacecraft.2.wideband FUV imaging[J]. Space Science Reviews, 2000, 91(1-2):271-285.
|
[2] |
LEITHERER C, VACCA W D, CONTI P S, et al.. Hubble space telescope ultraviolet imaging and spectroscopy of the bright starburst in the wolf-rayet galaxy NGC 4214[J]. Astrophysical Journal, 1996, 465(2):717-732.
|
[3] |
HORINOUCHI T, KOUYAMA T, LEE Y J, et al.. Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki[J]. Earth Planets & Space, 2018, 70(1):10.
|
[4] |
OKINO T, YAMAHIRA S, YAMADA S, et al.. A real-time ultraviolet radiation imaging system using an organic photoconductive image sensor[J]. Sensors, 2018, 18(1), doi: 10.3390/S1B010314.
|
[5] |
STERGAARD J. UV imaging in pharmaceutical analysis[J]. Journal of Pharmaceutical & Biomedical Analysis, 2018, 147:140.
|
[6] |
NOVIKOVA A, CARSTENSEN J M, ZEITLER J A, et al.. Multispectral UV imaging for determination of the tablet coating thickness[J]. Journal of Pharmaceutical Sciences, 2017, 106(6):1560-1569. doi: 10.1016/j.xphs.2017.02.016
|
[7] |
周峰, 郑国宪, 闫锋, 等.天基紫外预警技术发展现状及思考[J].航天返回与遥感, 2012, 33(6):39-44. http://d.old.wanfangdata.com.cn/Periodical/htfhyyg201206007
ZHOU F, ZHENG G X, YAN F, et al.. Development status and thoughts of space-based UV warning technology[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(6):39-44.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/htfhyyg201206007
|
[8] |
DING J, LI X, ZHU X, et al.. Solar-irradiated leakage of UV camera for daytime corona inspection[C]. Electrical Insulation and Dielectric Phenomena, 2015: 298-301.
|
[9] |
MCCLINTOCK W E, RUSCH D W, THOMAS G E, et al.. The cloud imaging and particle size experiment on the Aeronomy of ice in the mesosphere mission:instrument concept, design, calibration, and on-orbit performance[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71(3-4):340-355. doi: 10.1016/j.jastp.2008.10.011
|
[10] |
毛小洁.高功率皮秒紫外
器新进展[J].中国光学, 2015, 8(2):182-190. //www.illord.com/CN/abstract/abstract9255.shtml
MAO X J. New progress in high-power picosecond ultraviolet laser[J]. Chinese Optics, 2015, 8(2):182-190.(in Chinese) //www.illord.com/CN/abstract/abstract9255.shtml
|
[11] |
周影, 娄洪伟, 周跃, 等.微弱日盲紫外电晕自动实时检测方法[J].中国光学, 2015, 8(6):926-932. //www.illord.com/CN/abstract/abstract9364.shtml
ZHOU Y, LOU H W, ZHOU Y, et al.. Automatic real-time detection method of faint solar-blind ultraviolet corona[J]. Chinese Optics, 2015, 8(6):926-932. //www.illord.com/CN/abstract/abstract9364.shtml
|
[12] |
程宏昌, 端木庆铎, 石峰, 等.双微通道板紫外像增强器工作特性研究[J].真空科学与技术学报, 2013, 33(6):524-527. doi: 10.3969/j.issn.1672-7126.2013.06.04
CHENG H CH, DUANMU Q Z, SHI F, et al.. Characterization of solar blind double micro-channel plate ultraviolet image intensifier[J]. Chinese Journal of Vacuum Science & Technology, 2013, 33(6):524-527.(in Chinese) doi: 10.3969/j.issn.1672-7126.2013.06.04
|
[13] |
黄钧良.MAMA紫外探测器系统与高增益MCP[J].红外技术, 1997(4):33-35. doi: 10.1038-nm0710-731a/
HUANG J L. Evaluation of MAMA ultraviolet detectors and their applications[J]. Infrared Technology, 1997(4):33-35.(in Chinese) doi: 10.1038-nm0710-731a/
|
[14] |
YOSHIKAWA I. Ultraviolet detector with CMOS-coupled microchannel plates for future space missions[C]. Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 9905: 99053G.
|
[15] |
JOSEPH C L, WOODGATE B E. UV imaging detectors:high-QE EBCMOS enabling new science missions[J]. American Astronomical Society, 2011, 43
|
[16] |
尼启良.使用曲面微通道板和感应电荷位置灵敏阳极的软X射线-极紫外光子计数成像探测器研究[J].中国光学, 2015, 8(5):847-872. //www.illord.com/CN/abstract/abstract9354.shtml
NI Q L. Soft X-ray and extreme ultraviolet photon-counting imaging detector with curved surface micro-channel plate and induced charge position-sensitive anode[J]. Chinese Optics, 2015, 8(5):847-872.(in Chinese) //www.illord.com/CN/abstract/abstract9354.shtml
|
[17] |
卜绍芳, 尼启良, 何玲平, 等.极紫外波段微通道板光子计数探测器[J].中国光学, 2012, 5(3):302-309. doi: 10.3969/j.issn.2095-1531.2012.03.019
BU SH F, NI Q L, HE L P, et al.. Microchannel plate photon counting detector in UV range[J]. Chinese Optics, 2012, 5(3):302-309.(in Chinese) doi: 10.3969/j.issn.2095-1531.2012.03.019
|
[18] |
MONROY E, OMN S F, CALLE F. Topical review:wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science & Technology, 2003, 18(4):R33.
|
[19] |
ALAIE Z, NEJAD S M, YOUSEFI M H. Recent advances in ultraviolet photodetectors[J]. Materials Science in Semiconductor Processing, 2015, 29:16-55. doi: 10.1016/j.mssp.2014.02.054
|
[20] |
GAMBINI S, SKUCHA K, LIU P, et al.. A CMOS 10kpixel baseline-free magnetic bead detector with column-parallel readout for miniaturized immunoassays[C]. Solid-State Circuits Conference Digest of Technical Papers, 2012: 126-128.
|
[21] |
MA B, SHANG Z, HU Y, et al.. Atmospheric seeing measurement from bright star trails with frame transfer CCDs[C]. SPIE Astronomical Telescopes & Instrumentation, 2016: 99060A.
|
[22] |
MA B, WANG L, BOGGS K, et al.. The test of the 10k×10k CCD for Antarctic Survey Telescopes(AST3)[J]. Ground-based and Airborne Instrumentation for Astronomy IV.Proceedings of the SPIE, 2012, 8446(8446):572-577.
|
[23] |
NIKZAD S, HOENK M, JEWELL A D, et al.. Single photon counting uv solar-blind detectors using silicon and Ⅲ-nitride materials[J]. Sensors, 2016, 16(6):927. doi: 10.3390/s16060927
|
[24] |
PALIK E D. Handbook of Optical Constants of Solids Ⅱ[M]. Academic Press, 1985.
|
[25] |
ASPNES D E, STUDNA A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV[J]. Physical Review B, 1983, 27(2):985-1009. doi: 10.1103/PhysRevB.27.985
|
[26] |
TALMI Y, SIMPSON R W. Self-scanned photodiode array:a multichannel spectrometric detector[J]. Applied Optics, 1980, 19(9):1401-1414. doi: 10.1364/AO.19.001401
|
[27] |
VOGT S S, TULL R G, KELTON P. Self-scanned photodiode array:high performance operation in high dispersion astronomical spectrophotometry[J]. Applied Optics, 1978, 17(4):574-592. doi: 10.1364/AO.17.000574
|
[28] |
STERN R A, CATURA R C, KIMBLE R, et al.. Ultraviolet and extreme ultraviolet response of charge-coupled-device detectors[J]. Optical Engineering, 1987, 26(9):875-883.
|
[29] |
MASAHARU M, HIROSHI A, KATSUMI S, et al.. Greater-than-90% QE in visible spectrum perceptible from UV to near-IR Hamamatsu thinned back-illuminated CCDs[J]. Solid State Sensor Arrays:Development and Applications, 1997:2-9.
|
[30] |
HOENK M E, GRUNTHANER P J, GRUNTHANER F J, et al.. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency[J]. Applied Physics Letters, 1992, 61(9):1084-1086. doi: 10.1063/1.107675
|
[31] |
BLACKSBERG J, NIKZAD S, HOENK M E, et al.. Near-100% quantum efficiency of delta doped large-format UV-NIR silicon imagers[J]. IEEE Transactions on Electron Devices, 2008, 55(12):3402-3406. doi: 10.1109/TED.2008.2006779
|
[32] |
HYNECEK J. CCM-a new low-noise charge carrier multiplier suitable for detection of charge in small pixel CCD image sensors[J]. IEEE Transactions on Electron Devices, 1992, 39(8):1972-1975. doi: 10.1109/16.144694
|
[33] |
JACQUOT B, MARTIN C, SCHIMINOVICH D, et al.. Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications[J]. Applied Optics, 2012, 51(3):365-369. doi: 10.1364/AO.51.000365
|
[34] |
PRYDDERCH M L, WALTHAM N R, MORRISSEY Q, et al.. A large-area CMOS monolithic active pixel sensor for extreme ultraviolet spectroscopy and imaging[J]. Proc SPIE, 2004, 5301:175-185. doi: 10.1117/12.526401
|
[35] |
WALTHAM N R, PRYDDERCH M, MAPSON-MENARD H, et al.. Development of a thinned back-illuminated CMOS active pixel sensor for extreme ultraviolet spectroscopy and imaging in space science[J]. Nuclear Instruments & Methods in Physics Research, 2007, 573(1-2):250-252.
|
[36] |
HALAIN J P, MAZZOLI A, ROCHUS P, et al.. EUV high resolution imager on-board sOLAR oRBITer: optical design and detector performances[C]. International Conference on Space Optics ICSO2012, 2012, 10564: 105643V.
|
[37] |
HALAIN J P, HERMANS L, MEYNANTS G. The dual-gain 10μm back-thinned 3k×3k CMOS-APS detector of the solar orbiter extreme UV imager[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2014, 9144:914431.
|
[38] |
KURODA R, KAWADA S, NASUNO S, et al.. A CMOS image sensor with 200-1000 nm spectral response and high robustness to ultraviolet light exposure[J]. ITE Technical Report, 2013, 37:21-24.
|
[39] |
NASUNO S, WAKASHIMA S, KUSUHARA F, et al.. A CMOS image sensor with 240μV/e-conversion gain, 200 ke-full well capacity, 190-1000 nm spectral response and high robustness to UV light[J]. ITE Transactions on Media Technology and Applications, 2016, 4(2):116-122. doi: 10.3169/mta.4.116
|
[40] |
HOENK M E, JONES T J, DICKIE M R, et al.. Delta-doped back-illuminated CMOS imaging arrays:progress and prospects[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7419:74190T. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0210142577/
|
[41] |
HAMDEN E T, GREER F, HOENK M E, et al.. Ultraviolet antireflection coatings for use in silicon detector design[J]. Applied Optics, 2011, 50(21):4180-4188. doi: 10.1364/AO.50.004180
|
[42] |
HAMDEN E T, JEWELL A D, SHAPIRO C A, et al.. Charge-coupled devices detectors with high quantum efficiency at UV wavelengths[J]. Journal of Astronomical Telescopes Instruments & Systems, 2016, 2(3):036003.
|
[43] |
BLOUKE M M, COWENS M W, HALL J E, et al.. A UV sensitive CCD detector[C]. Electron Devices Meeting, 1979 Internationa, 1979: 141-143.
|
[44] |
BLOUKE M M, COWENS M W, HALL J E, et al.. Ultraviolet downconverting phosphor for use with silicon CCD imagers[J]. Applied Optics, 1980, 19(19):3318-3321. doi: 10.1364/AO.19.003318
|
[45] |
COWENS M W, BLOUKE M M, FAIRCHILD T, et al.. Coronene and liumogen as VUV sensitive coatings for Si CCD imagers:a comparison[J]. Applied Optics, 1980, 19(22):3727-3728. doi: 10.1364/AO.19.003727
|
[46] |
VIEHMANN A W, BUTNER C L, COWENS M W. Ultraviolet/UV/sensitive phosphors for silicon imaging detectors[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1981, 279(12):146-152.
|
[47] |
MORRISSEY P F, MCCANDLISS S R, FELDMAN P D, et al. Ultraviolet performance of a lumigen-coated CCD[J]. Bulletin of the American Astronomical Society, 1991, 23:1316.
|
[48] |
DAMENTO M A, BARCELLOS A A, SCHEMPP W V. Stability of lumogen films on CCDs[C]. IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology, 1995: 204-210.
|
[49] |
DESLANDES A, WEDDING A B, CLARKE S R, et al.. Characterization of PVD Lumogen films for wavelength conversion applications[C]. Smart Materials, Nano-, and Micro-Smart Systems, 2005: 616-626.
|
[50] |
张大伟, 田鑫, 黄元申, 等.CCD紫外敏感Lumogen薄膜制备与光谱表征[J].光谱学与光谱分析, 2010, 30(5):1171-1174. doi: 10.3964/j.issn.1000-0593(2010)05-1171-04
ZHANG D W, TIAN X, HUANG Y SH, et al.. Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors[J]. Spectroscopy & Spectral Analysis, 2010, 30(5):1171-1174.(in Chinese) doi: 10.3964/j.issn.1000-0593(2010)05-1171-04
|
[51] |
杜晨光, 孙利群, 丁志田.利用晕苯增强CCD紫外响应的实验研究[J].光学技术, 2010, 36(5):753-757. http://d.old.wanfangdata.com.cn/Periodical/gxjs201005025
DU CH G, SUN L Q, DING ZH T. Experiment study of enhancing CCD ultraviolet response using coronene[J]. Optical Technique, 2010, 36(5):753-757.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjs201005025
|
[52] |
何梁, 张大伟, 陶春先, 等.旋涂法和热蒸发制备紫外CCD用晕苯薄膜的性能对比[J].光谱学与光谱分析, 2014, 34(5):1319-1322. doi: 10.3964/j.issn.1000-0593(2014)05-1319-04
HE L, ZHANG D W, TAO CH X, et al.. Performance comparison of coronene film for UV-CCD prepared by spin-coating and physical vapor deposition[J]. Spectroscopy & Spectral Analysis, 2014, 34(5):1319-1322.(in Chinese) doi: 10.3964/j.issn.1000-0593(2014)05-1319-04
|
[53] |
姜霖, 张大伟, 陶春先, 等.紫外增强Lumogen薄膜旋涂法制备及其性能表征[J].光谱学与光谱分析, 2013, 33(2):468-470. doi: 10.3964/j.issn.1000-0593(2013)02-0468-03
JIANG L, ZANG D W, TAO CH X, et al. Preparation by spin-coating technology and characterization of UV-enhanced Lumogen film[J]. Spectroscopy & Spectral Analysis, 2013, 33(2):468-470.(in Chinese) doi: 10.3964/j.issn.1000-0593(2013)02-0468-03
|
[54] |
冯宇祥, 孟银霞, 张国玉, 等.CCD紫外增强薄膜旋涂法工艺优化[J].光谱学与光谱分析, 2017, 37(9):2826-2831. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201709031
FENG Y X, MENG Y X, ZHANG G Y, et al.. Process optimization of CCD UV-responsive sensitivity enhancement by spin-coating[J]. Spectroscopy & Spectral Analysis, 2017, 37(9):2826-2831.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201709031
|
[55] |
刘琼, 马守宝, 钱晓晨, 等.CMOS传感器紫外敏化膜层的厚度优化及其光电性能测试[J].光子学报, 2017, 46(6):225-230. http://d.old.wanfangdata.com.cn/Periodical/gzxb201706031
LIU Q, MA SH B, QIAN X CH, et al.. Thickness optimization and photoelectric performance test of UV sensitized film of CMOS sensor[J]. Acta Photonica Sinica, 2017, 46(6):225-230.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201706031
|
[56] |
FRANKS W A R, KⅡK M J, NATHAN A. UV-responsive CCD image sensors with enhanced inorganic phosphor coatings[J]. IEEE Transactions on Electron Devices, 2003, 50(2):352-358. doi: 10.1109/TED.2003.809029
|
[57] |
刘猛, 张大伟, 谢品, 等.增强光电图像传感器紫外探测薄膜的制备[J].仪表技术与传感器, 2009, 30(9):12-14. doi: 10.3969/j.issn.1002-1841.2009.09.005
LIU M, ZHANG D W, XIE P, et al.. Investigation in UV-enhanced coatings based on Zn2SiO4:Mn for image sensors[J]. Instrument Technique & Sensor, 2009, 30(9):12-14.(in Chinese) doi: 10.3969/j.issn.1002-1841.2009.09.005
|
[58] |
SHENG X, YU C, MALYARCHUK V, et al.. Photodetectors:silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores[J]. Advanced Optical Materials, 2014, 2(4):314-319. doi: 10.1002/adom.v2.4
|
[59] |
TAI Y, LI X, PAN B. Efficient near-infrared down conversion in Nd3+-Yb3+ co-doped transparent nanostructured glass ceramics for photovoltaic application[J]. Journal of Luminescence, 2018, 195:102-108. doi: 10.1016/j.jlumin.2017.10.051
|
[60] |
SONG Y, YOU H, HUANG Y, et al.. Highly uniform and monodisperse Gd(2)O(2)S:Ln(3+)(Ln=Eu, Tb) submicrospheres:solvothermal synthesis and luminescence properties[J]. Inorganic Chemistry, 2010, 49(24):11499-11504. doi: 10.1021/ic101608b
|
[61] |
STRMPEL C, MCCANN M, BEAUCARNE G, et al.. Modifying the solar spectrum to enhance silicon solar cell efficiency-an overview of available materials[J]. Solar Energy Materials & Solar Cells, 2007, 91(4):238-249.
|
[62] |
ARQUER FPGD, ARMIN A, MEREDITH P, et al. Corrigendum:solution-processed semiconductors for next-generation photodetectors[J]. Nature Reviews Materials, 2017, 2(3):16100. doi: 10.1038/natrevmats.2016.100
|
[63] |
HAN H V, LU A Y, LU L S, et al.. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment[J]. Acs Nano, 2016, 10(1):1454-1461. doi: 10.1021/acsnano.5b06960
|
[64] |
KAGAN C R, LIFSHITZ E, SARGENT E H, et al.. Building devices from colloidal quantum dots[J]. Science, 2016, 353(6302):885. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227499384/
|
[65] |
GEYER S M, SCHERER J M, MOLOTO N, et al.. Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications[J]. Acs Nano, 2011, 5(7):5566-5571. doi: 10.1021/nn2010238
|
[66] |
JIANG L, SUN H, XU B, et al.. The spectrum of quantum dots film for UV CCD[J]. Journal of Spectroscopy, 2013:1-5.
|
[67] |
BHASKARAN S. First report on quantum dot coated CMOS CID arrays for the UV and VUV[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2013, 8859(10):1877-1889.
|
[68] |
KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science, 2017, 358(6364):745-750. doi: 10.1126/science.aam7093
|
[69] |
ZHOU Q C, BAI Z L, LU W G, et al.. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28(41):9163-9168. doi: 10.1002/adma.201602651
|
[70] |
ZHANG M, WANG L, MENG L, et al.. Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection[J]. Advanced Optical Materials, 2018:1800077.
|
[71] |
LIU Y, WEISS NO, DUAN X, et al.. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 2016, 1(9):16042. doi: 10.1038/natrevmats.2016.42
|
[72] |
CHHOWALLA M, JENA D, ZHANG H. Two-dimensional semiconductors for transistors[J]. Nature Reviews Materials, 2016, 1(11):16052. doi: 10.1038/natrevmats.2016.52
|
[73] |
SUN Z, MARTINEZ A, WANG F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4):227-238. doi: 10.1038/nphoton.2016.15
|
[74] |
ELKADY M F, SHAO Y, KANER R B. Graphene for batteries, supercapacitors and beyond[J]. Nature Reviews Materials, 2016, 1(7):16033. doi: 10.1038/natrevmats.2016.33
|
[75] |
WANG Y M, DING K, SUN B Q, et al.. Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications[J]. Nano Research, 2016, 9(1):72-93. doi: 10.1007/s12274-016-1003-3
|
[76] |
LI G, LIU L, WU G, et al.. Self-powered UV-near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction[J]. Small, 2016, 12(36):5019-5026. doi: 10.1002/smll.201600835
|
[77] |
GUO X C, HAO N H, GUO D Y, et al.. β -Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity[J]. Journal of Alloys & Compounds, 2016, 660:136-140.
|
[78] |
ZHANG Y, YU Y, MI L, et al.. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors[J]. Small, 2016, 12(8):1062-1071. doi: 10.1002/smll.201502923
|
[79] |
LOU Z, ZENG L, WANG Y, et al.. High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared[J]. Optics Letters, 2017, 42(17):3335-3338. doi: 10.1364/OL.42.003335
|
[80] |
JI T, LIU Q, ZOU R, et al.. An interface engineered multicolor photodetector based on n-Si(111)/TiO2 nanorod array heterojunction[J]. Advanced Functional Materials, 2016, 26(9):1400-1410. doi: 10.1002/adfm.201504464
|
[81] |
LING C C, GUO T C, LU W B, et al. Ultrahigh photosensitivity and detectivity of hydrogen-treated TiO2 nanorod array/SiO2/Si heterojunction broadband photodetectors and its mechanism[J]. Journal of Materials Chemistry C, 2018, 6(9):2319-2328. doi: 10.1039/C7TC05580C
|
[82] |
FLEMBAN T H, HAQUE M A, AJIA I A, et al.. A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity[J]. Acs Applied Materials & Interfaces, 2017, 9(42):37120-37127.
|
[83] |
ZHANG H, ZHANG X, LIU C, et al.. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors[J]. Acs Nano, 2016, 10(5):5113-5122. doi: 10.1021/acsnano.6b00272
|
[84] |
YAO J D, ZHENG Z Q, SHAO J M, et al.. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition[J]. Nanoscale, 2015, 7(36):14974-14981. doi: 10.1039/C5NR03361F
|
[85] |
YAO J, SHAO J, WANG Y, et al.. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments[J]. Nanoscale, 2015, 7(29):12535-12541. doi: 10.1039/C5NR02953H
|
[86] |
LEE GH, CUI X, KIM P. Atomically thin p-n junctions with van der Waals heterointerfaces[J]. Nature Nanotechnology, 2014, 9(9):676-681. doi: 10.1038/nnano.2014.150
|
[87] |
GOOSSENS S, NAVICKAITE G, MONASTERIO C, et al.. Broadband image sensor array based on graphene CMOS integration[J]. Nature Photonics, 2017, 11(6):366-371. doi: 10.1038/nphoton.2017.75
|
[88] |
阮宁娟, 苏云.国外紫外空间探测器发展综述[J].航天返回与遥感, 2008, 29(3):71-78. doi: 10.3969/j.issn.1009-8518.2008.03.013
RUAN N J, SU Y. Summarization of overseas space ultraviolet instrument development[J]. Spacecraft Recovery & Remote Sensing, 2008, 29(3):71-78.(in Chinese) doi: 10.3969/j.issn.1009-8518.2008.03.013
|
[89] |
张燕, 龚海梅, 白云, 等.空间用紫外探测及AlGaN探测器的研究进展[J].
与红外, 2006, 36(11):1009-1012. doi: 10.3969/j.issn.1001-5078.2006.11.001
ZHANG Y, GONG H M, BAI Y, et al. UV detection applied to space and the research development of AlGaN detector[J]. Laser & Infrared, 2006, 36(11):1009-1012.(in Chinese) doi: 10.3969/j.issn.1001-5078.2006.11.001
|
[90] |
GLADSTONE G R, PERSYN S C, ETERNO J S, et al.. The ultraviolet spectrograph on NASA's Juno mission[J]. Space Science Reviews, 2017, 213:1-27. doi: 10.1007/s11214-017-0430-0
|
[91] |
MENDE S B, FREY H U, RIDER K, et al. The far ultraviolet imager on the icon mission[J]. Space Science Reviews, 2017, 212:1-42. doi: 10.1007/s11214-016-0319-3
|
[92] |
MCMASTER M, AL E. Wide Field and Planetary Camera 2 Instrument Handbook v. 10.0[M]. Wide Field & Planetary Camera Hst Instrument Handbook, 2008.
|
[93] |
DRESSEL L. Wide Field Camera 3 Instrument Handbook for Cycle 21 v. 5.0[M]. Wide Field Camera 3, HST Instrument Handbook, 2012.
|
[94] |
KHAN A R, CHORDIA P, GANDORFER A M. The solar ultraviolet imaging telescope onboard aditya-L1[C]. SPIE Astronomical Telescopes and Instrumentation, 2016: 990504.
|
[95] |
KLUKKERT M, WU J X, RANTANEN J, et al.. Rapid assessment of tablet film coating quality by multispectral UV imaging[J]. Aaps Pharmscitech, 2016, 17(4):958-967. doi: 10.1208/s12249-015-0414-x
|
[96] |
石峰, 程宏昌, 闫磊, 等.紫外探测技术[M].北京:国防工业出版社, 2017.
SHI F, CHENG H CH, YAN L. UV Detection Tchnique[M]. Beijing:National Defense Industry Press, 2017.(in Chinese)
|
[97] |
PRATT H, HASSANIN K, TROUGHTON L D, et al.. UV imaging reveals facial areas that are prone to skin cancer are disproportionately missed during sunscreen application[J]. Plos One, 2017, 12(10):e0185297. doi: 10.1371/journal.pone.0185297
|
[98] |
LI Y, WANG T, GUO L, et al.. Detection and analysis of high voltage electrical equipment corona discharge based on ultraviolet imaging technology[C]. Control and Decision Conference, 2017: 6928-6931.
|
[99] |
叶柏松, 袁永刚, 王继强, 等.一种便携式电晕检测紫外相机的设计[J].红外, 2013, 34(4):24-27. doi: 10.3969/j.issn.1672-8785.2013.04.005
YE B S, YUAN Y G, WANG J Q, et al.. Design of a portable UV camera for corona detection[J]. Infrared, 2013, 34(4):24-27.(in Chinese) doi: 10.3969/j.issn.1672-8785.2013.04.005
|
[100] |
刘建卓, 王学进, 黄剑波, 等.三波段电晕检测光学系统的设计[J].光学精密工程, 2011, 19(6):1228-1234. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201106008
LIU J ZH, WANG X J, HUANG J B, et al.. Design of three-band optical system used in corona detection[J]. Opt. Precision Eng., 2011, 19(6):1228-1234.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201106008
|
[101] |
张洁.机载导弹逼近告警技术发展分析[J].舰船电子工程, 2014, 34(11):19-23. http://d.old.wanfangdata.com.cn/Periodical/jcdzgc201411006
ZHANG J. Development and analysis of airborne missile warning technology[J]. Ship Electronic Engineering, 2014, 34(11):19-23.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jcdzgc201411006
|
[102] |
THOMPSON N J, WILSON M W, CONGREVE D N, et al.. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals[J]. Nature Materials, 2014, 13(11):1039-1043. doi: 10.1038/nmat4097
|
[103] |
SONI A, PUROHIT S, HEGDE R S. Multilayered aluminum plasmonic metasurfaces for ultraviolet bandpass filtering[J]. IEEE Photonics Technology Letters, 2017, 29(1):110-113. doi: 10.1109/LPT.2016.2629504
|
[104] |
MACKENTY J W. A near ultraviolet solar-blind telescope design using silicon CCD detectors[C]. Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 990538.
|
[105] |
LI W D, CHOU S Y. Solar-blind deep-UV band-pass filter(250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography[J]. Optics Express, 2010, 18(2):931-937. doi: 10.1364/OE.18.000931
|