Volume 12 Issue 1
Feb.  2019
Turn off MathJax
Article Contents
ZHANG Meng-jiao, CAI Yi, JIANG Feng, ZHONG Hai-zheng, WANG Ling-xue. Silicon-based ultraviolet photodetection: progress and prospects[J]. Chinese Optics, 2019, 12(1): 19-37. doi: 10.3788/CO.20191201.0019
Citation: ZHANG Meng-jiao, CAI Yi, JIANG Feng, ZHONG Hai-zheng, WANG Ling-xue. Silicon-based ultraviolet photodetection: progress and prospects[J]. Chinese Optics, 2019, 12(1): 19-37. doi: 10.3788/CO.20191201.0019

Silicon-based ultraviolet photodetection: progress and prospects

doi: 10.3788/CO.20191201.0019
Funds:

National Natural Science Foundation of China 61471044

National key research and development program 2017YFC0110100

More Information
  • Corresponding author: WANG Ling-xue, E-mail:neobull@bit.edu.cn
  • Received Date: 03 Apr 2018
  • Rev Recd Date: 26 Apr 2018
  • Publish Date: 01 Feb 2019
  • Silicon-based photodetectors are beneficial for their reliability, integration, scalability and low cost. However, due to their shallow penetration depth for UV radiation, conventional silicon devices have very limited ultraviolet responses. Motivated by the progress of silicon-based semiconductor processing techniques and nanoscience, UV-enhanced silicon-based photodetectors have been well developed and broadly applied. In this paper, we review the progress of this technology, its materials, its processing techniques and its applications in astrophysics, biochemical analysis and corona detection, and discuss the challenges and future prospects of silicon-based UV detection in sensitive imaging technologies.

     

  • loading
  • [1]
    MENDE S B, HEETDERKS H, FREY H U, et al.. Far ultraviolet imaging from the IMAGE spacecraft.2.wideband FUV imaging[J]. Space Science Reviews, 2000, 91(1-2):271-285.
    [2]
    LEITHERER C, VACCA W D, CONTI P S, et al.. Hubble space telescope ultraviolet imaging and spectroscopy of the bright starburst in the wolf-rayet galaxy NGC 4214[J]. Astrophysical Journal, 1996, 465(2):717-732.
    [3]
    HORINOUCHI T, KOUYAMA T, LEE Y J, et al.. Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki[J]. Earth Planets & Space, 2018, 70(1):10.
    [4]
    OKINO T, YAMAHIRA S, YAMADA S, et al.. A real-time ultraviolet radiation imaging system using an organic photoconductive image sensor[J]. Sensors, 2018, 18(1), doi: 10.3390/S1B010314.
    [5]
    STERGAARD J. UV imaging in pharmaceutical analysis[J]. Journal of Pharmaceutical & Biomedical Analysis, 2018, 147:140.
    [6]
    NOVIKOVA A, CARSTENSEN J M, ZEITLER J A, et al.. Multispectral UV imaging for determination of the tablet coating thickness[J]. Journal of Pharmaceutical Sciences, 2017, 106(6):1560-1569. doi: 10.1016/j.xphs.2017.02.016
    [7]
    周峰, 郑国宪, 闫锋, 等.天基紫外预警技术发展现状及思考[J].航天返回与遥感, 2012, 33(6):39-44. http://d.old.wanfangdata.com.cn/Periodical/htfhyyg201206007

    ZHOU F, ZHENG G X, YAN F, et al.. Development status and thoughts of space-based UV warning technology[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(6):39-44.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/htfhyyg201206007
    [8]
    DING J, LI X, ZHU X, et al.. Solar-irradiated leakage of UV camera for daytime corona inspection[C]. Electrical Insulation and Dielectric Phenomena, 2015: 298-301.
    [9]
    MCCLINTOCK W E, RUSCH D W, THOMAS G E, et al.. The cloud imaging and particle size experiment on the Aeronomy of ice in the mesosphere mission:instrument concept, design, calibration, and on-orbit performance[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71(3-4):340-355. doi: 10.1016/j.jastp.2008.10.011
    [10]
    毛小洁.高功率皮秒紫外 器新进展[J].中国光学, 2015, 8(2):182-190. //www.illord.com/CN/abstract/abstract9255.shtml

    MAO X J. New progress in high-power picosecond ultraviolet laser[J]. Chinese Optics, 2015, 8(2):182-190.(in Chinese) //www.illord.com/CN/abstract/abstract9255.shtml
    [11]
    周影, 娄洪伟, 周跃, 等.微弱日盲紫外电晕自动实时检测方法[J].中国光学, 2015, 8(6):926-932. //www.illord.com/CN/abstract/abstract9364.shtml

    ZHOU Y, LOU H W, ZHOU Y, et al.. Automatic real-time detection method of faint solar-blind ultraviolet corona[J]. Chinese Optics, 2015, 8(6):926-932. //www.illord.com/CN/abstract/abstract9364.shtml
    [12]
    程宏昌, 端木庆铎, 石峰, 等.双微通道板紫外像增强器工作特性研究[J].真空科学与技术学报, 2013, 33(6):524-527. doi: 10.3969/j.issn.1672-7126.2013.06.04

    CHENG H CH, DUANMU Q Z, SHI F, et al.. Characterization of solar blind double micro-channel plate ultraviolet image intensifier[J]. Chinese Journal of Vacuum Science & Technology, 2013, 33(6):524-527.(in Chinese) doi: 10.3969/j.issn.1672-7126.2013.06.04
    [13]
    黄钧良.MAMA紫外探测器系统与高增益MCP[J].红外技术, 1997(4):33-35. doi: 10.1038-nm0710-731a/

    HUANG J L. Evaluation of MAMA ultraviolet detectors and their applications[J]. Infrared Technology, 1997(4):33-35.(in Chinese) doi: 10.1038-nm0710-731a/
    [14]
    YOSHIKAWA I. Ultraviolet detector with CMOS-coupled microchannel plates for future space missions[C]. Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 9905: 99053G.
    [15]
    JOSEPH C L, WOODGATE B E. UV imaging detectors:high-QE EBCMOS enabling new science missions[J]. American Astronomical Society, 2011, 43
    [16]
    尼启良.使用曲面微通道板和感应电荷位置灵敏阳极的软X射线-极紫外光子计数成像探测器研究[J].中国光学, 2015, 8(5):847-872. //www.illord.com/CN/abstract/abstract9354.shtml

    NI Q L. Soft X-ray and extreme ultraviolet photon-counting imaging detector with curved surface micro-channel plate and induced charge position-sensitive anode[J]. Chinese Optics, 2015, 8(5):847-872.(in Chinese) //www.illord.com/CN/abstract/abstract9354.shtml
    [17]
    卜绍芳, 尼启良, 何玲平, 等.极紫外波段微通道板光子计数探测器[J].中国光学, 2012, 5(3):302-309. doi: 10.3969/j.issn.2095-1531.2012.03.019

    BU SH F, NI Q L, HE L P, et al.. Microchannel plate photon counting detector in UV range[J]. Chinese Optics, 2012, 5(3):302-309.(in Chinese) doi: 10.3969/j.issn.2095-1531.2012.03.019
    [18]
    MONROY E, OMN S F, CALLE F. Topical review:wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science & Technology, 2003, 18(4):R33.
    [19]
    ALAIE Z, NEJAD S M, YOUSEFI M H. Recent advances in ultraviolet photodetectors[J]. Materials Science in Semiconductor Processing, 2015, 29:16-55. doi: 10.1016/j.mssp.2014.02.054
    [20]
    GAMBINI S, SKUCHA K, LIU P, et al.. A CMOS 10kpixel baseline-free magnetic bead detector with column-parallel readout for miniaturized immunoassays[C]. Solid-State Circuits Conference Digest of Technical Papers, 2012: 126-128.
    [21]
    MA B, SHANG Z, HU Y, et al.. Atmospheric seeing measurement from bright star trails with frame transfer CCDs[C]. SPIE Astronomical Telescopes & Instrumentation, 2016: 99060A.
    [22]
    MA B, WANG L, BOGGS K, et al.. The test of the 10k×10k CCD for Antarctic Survey Telescopes(AST3)[J]. Ground-based and Airborne Instrumentation for Astronomy IV.Proceedings of the SPIE, 2012, 8446(8446):572-577.
    [23]
    NIKZAD S, HOENK M, JEWELL A D, et al.. Single photon counting uv solar-blind detectors using silicon and Ⅲ-nitride materials[J]. Sensors, 2016, 16(6):927. doi: 10.3390/s16060927
    [24]
    PALIK E D. Handbook of Optical Constants of Solids Ⅱ[M]. Academic Press, 1985.
    [25]
    ASPNES D E, STUDNA A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV[J]. Physical Review B, 1983, 27(2):985-1009. doi: 10.1103/PhysRevB.27.985
    [26]
    TALMI Y, SIMPSON R W. Self-scanned photodiode array:a multichannel spectrometric detector[J]. Applied Optics, 1980, 19(9):1401-1414. doi: 10.1364/AO.19.001401
    [27]
    VOGT S S, TULL R G, KELTON P. Self-scanned photodiode array:high performance operation in high dispersion astronomical spectrophotometry[J]. Applied Optics, 1978, 17(4):574-592. doi: 10.1364/AO.17.000574
    [28]
    STERN R A, CATURA R C, KIMBLE R, et al.. Ultraviolet and extreme ultraviolet response of charge-coupled-device detectors[J]. Optical Engineering, 1987, 26(9):875-883.
    [29]
    MASAHARU M, HIROSHI A, KATSUMI S, et al.. Greater-than-90% QE in visible spectrum perceptible from UV to near-IR Hamamatsu thinned back-illuminated CCDs[J]. Solid State Sensor Arrays:Development and Applications, 1997:2-9.
    [30]
    HOENK M E, GRUNTHANER P J, GRUNTHANER F J, et al.. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency[J]. Applied Physics Letters, 1992, 61(9):1084-1086. doi: 10.1063/1.107675
    [31]
    BLACKSBERG J, NIKZAD S, HOENK M E, et al.. Near-100% quantum efficiency of delta doped large-format UV-NIR silicon imagers[J]. IEEE Transactions on Electron Devices, 2008, 55(12):3402-3406. doi: 10.1109/TED.2008.2006779
    [32]
    HYNECEK J. CCM-a new low-noise charge carrier multiplier suitable for detection of charge in small pixel CCD image sensors[J]. IEEE Transactions on Electron Devices, 1992, 39(8):1972-1975. doi: 10.1109/16.144694
    [33]
    JACQUOT B, MARTIN C, SCHIMINOVICH D, et al.. Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications[J]. Applied Optics, 2012, 51(3):365-369. doi: 10.1364/AO.51.000365
    [34]
    PRYDDERCH M L, WALTHAM N R, MORRISSEY Q, et al.. A large-area CMOS monolithic active pixel sensor for extreme ultraviolet spectroscopy and imaging[J]. Proc SPIE, 2004, 5301:175-185. doi: 10.1117/12.526401
    [35]
    WALTHAM N R, PRYDDERCH M, MAPSON-MENARD H, et al.. Development of a thinned back-illuminated CMOS active pixel sensor for extreme ultraviolet spectroscopy and imaging in space science[J]. Nuclear Instruments & Methods in Physics Research, 2007, 573(1-2):250-252.
    [36]
    HALAIN J P, MAZZOLI A, ROCHUS P, et al.. EUV high resolution imager on-board sOLAR oRBITer: optical design and detector performances[C]. International Conference on Space Optics ICSO2012, 2012, 10564: 105643V.
    [37]
    HALAIN J P, HERMANS L, MEYNANTS G. The dual-gain 10μm back-thinned 3k×3k CMOS-APS detector of the solar orbiter extreme UV imager[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2014, 9144:914431.
    [38]
    KURODA R, KAWADA S, NASUNO S, et al.. A CMOS image sensor with 200-1000 nm spectral response and high robustness to ultraviolet light exposure[J]. ITE Technical Report, 2013, 37:21-24.
    [39]
    NASUNO S, WAKASHIMA S, KUSUHARA F, et al.. A CMOS image sensor with 240μV/e-conversion gain, 200 ke-full well capacity, 190-1000 nm spectral response and high robustness to UV light[J]. ITE Transactions on Media Technology and Applications, 2016, 4(2):116-122. doi: 10.3169/mta.4.116
    [40]
    HOENK M E, JONES T J, DICKIE M R, et al.. Delta-doped back-illuminated CMOS imaging arrays:progress and prospects[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7419:74190T. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0210142577/
    [41]
    HAMDEN E T, GREER F, HOENK M E, et al.. Ultraviolet antireflection coatings for use in silicon detector design[J]. Applied Optics, 2011, 50(21):4180-4188. doi: 10.1364/AO.50.004180
    [42]
    HAMDEN E T, JEWELL A D, SHAPIRO C A, et al.. Charge-coupled devices detectors with high quantum efficiency at UV wavelengths[J]. Journal of Astronomical Telescopes Instruments & Systems, 2016, 2(3):036003.
    [43]
    BLOUKE M M, COWENS M W, HALL J E, et al.. A UV sensitive CCD detector[C]. Electron Devices Meeting, 1979 Internationa, 1979: 141-143.
    [44]
    BLOUKE M M, COWENS M W, HALL J E, et al.. Ultraviolet downconverting phosphor for use with silicon CCD imagers[J]. Applied Optics, 1980, 19(19):3318-3321. doi: 10.1364/AO.19.003318
    [45]
    COWENS M W, BLOUKE M M, FAIRCHILD T, et al.. Coronene and liumogen as VUV sensitive coatings for Si CCD imagers:a comparison[J]. Applied Optics, 1980, 19(22):3727-3728. doi: 10.1364/AO.19.003727
    [46]
    VIEHMANN A W, BUTNER C L, COWENS M W. Ultraviolet/UV/sensitive phosphors for silicon imaging detectors[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1981, 279(12):146-152.
    [47]
    MORRISSEY P F, MCCANDLISS S R, FELDMAN P D, et al. Ultraviolet performance of a lumigen-coated CCD[J]. Bulletin of the American Astronomical Society, 1991, 23:1316.
    [48]
    DAMENTO M A, BARCELLOS A A, SCHEMPP W V. Stability of lumogen films on CCDs[C]. IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology, 1995: 204-210.
    [49]
    DESLANDES A, WEDDING A B, CLARKE S R, et al.. Characterization of PVD Lumogen films for wavelength conversion applications[C]. Smart Materials, Nano-, and Micro-Smart Systems, 2005: 616-626.
    [50]
    张大伟, 田鑫, 黄元申, 等.CCD紫外敏感Lumogen薄膜制备与光谱表征[J].光谱学与光谱分析, 2010, 30(5):1171-1174. doi: 10.3964/j.issn.1000-0593(2010)05-1171-04

    ZHANG D W, TIAN X, HUANG Y SH, et al.. Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors[J]. Spectroscopy & Spectral Analysis, 2010, 30(5):1171-1174.(in Chinese) doi: 10.3964/j.issn.1000-0593(2010)05-1171-04
    [51]
    杜晨光, 孙利群, 丁志田.利用晕苯增强CCD紫外响应的实验研究[J].光学技术, 2010, 36(5):753-757. http://d.old.wanfangdata.com.cn/Periodical/gxjs201005025

    DU CH G, SUN L Q, DING ZH T. Experiment study of enhancing CCD ultraviolet response using coronene[J]. Optical Technique, 2010, 36(5):753-757.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjs201005025
    [52]
    何梁, 张大伟, 陶春先, 等.旋涂法和热蒸发制备紫外CCD用晕苯薄膜的性能对比[J].光谱学与光谱分析, 2014, 34(5):1319-1322. doi: 10.3964/j.issn.1000-0593(2014)05-1319-04

    HE L, ZHANG D W, TAO CH X, et al.. Performance comparison of coronene film for UV-CCD prepared by spin-coating and physical vapor deposition[J]. Spectroscopy & Spectral Analysis, 2014, 34(5):1319-1322.(in Chinese) doi: 10.3964/j.issn.1000-0593(2014)05-1319-04
    [53]
    姜霖, 张大伟, 陶春先, 等.紫外增强Lumogen薄膜旋涂法制备及其性能表征[J].光谱学与光谱分析, 2013, 33(2):468-470. doi: 10.3964/j.issn.1000-0593(2013)02-0468-03

    JIANG L, ZANG D W, TAO CH X, et al. Preparation by spin-coating technology and characterization of UV-enhanced Lumogen film[J]. Spectroscopy & Spectral Analysis, 2013, 33(2):468-470.(in Chinese) doi: 10.3964/j.issn.1000-0593(2013)02-0468-03
    [54]
    冯宇祥, 孟银霞, 张国玉, 等.CCD紫外增强薄膜旋涂法工艺优化[J].光谱学与光谱分析, 2017, 37(9):2826-2831. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201709031

    FENG Y X, MENG Y X, ZHANG G Y, et al.. Process optimization of CCD UV-responsive sensitivity enhancement by spin-coating[J]. Spectroscopy & Spectral Analysis, 2017, 37(9):2826-2831.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201709031
    [55]
    刘琼, 马守宝, 钱晓晨, 等.CMOS传感器紫外敏化膜层的厚度优化及其光电性能测试[J].光子学报, 2017, 46(6):225-230. http://d.old.wanfangdata.com.cn/Periodical/gzxb201706031

    LIU Q, MA SH B, QIAN X CH, et al.. Thickness optimization and photoelectric performance test of UV sensitized film of CMOS sensor[J]. Acta Photonica Sinica, 2017, 46(6):225-230.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201706031
    [56]
    FRANKS W A R, KⅡK M J, NATHAN A. UV-responsive CCD image sensors with enhanced inorganic phosphor coatings[J]. IEEE Transactions on Electron Devices, 2003, 50(2):352-358. doi: 10.1109/TED.2003.809029
    [57]
    刘猛, 张大伟, 谢品, 等.增强光电图像传感器紫外探测薄膜的制备[J].仪表技术与传感器, 2009, 30(9):12-14. doi: 10.3969/j.issn.1002-1841.2009.09.005

    LIU M, ZHANG D W, XIE P, et al.. Investigation in UV-enhanced coatings based on Zn2SiO4:Mn for image sensors[J]. Instrument Technique & Sensor, 2009, 30(9):12-14.(in Chinese) doi: 10.3969/j.issn.1002-1841.2009.09.005
    [58]
    SHENG X, YU C, MALYARCHUK V, et al.. Photodetectors:silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores[J]. Advanced Optical Materials, 2014, 2(4):314-319. doi: 10.1002/adom.v2.4
    [59]
    TAI Y, LI X, PAN B. Efficient near-infrared down conversion in Nd3+-Yb3+ co-doped transparent nanostructured glass ceramics for photovoltaic application[J]. Journal of Luminescence, 2018, 195:102-108. doi: 10.1016/j.jlumin.2017.10.051
    [60]
    SONG Y, YOU H, HUANG Y, et al.. Highly uniform and monodisperse Gd(2)O(2)S:Ln(3+)(Ln=Eu, Tb) submicrospheres:solvothermal synthesis and luminescence properties[J]. Inorganic Chemistry, 2010, 49(24):11499-11504. doi: 10.1021/ic101608b
    [61]
    STRMPEL C, MCCANN M, BEAUCARNE G, et al.. Modifying the solar spectrum to enhance silicon solar cell efficiency-an overview of available materials[J]. Solar Energy Materials & Solar Cells, 2007, 91(4):238-249.
    [62]
    ARQUER FPGD, ARMIN A, MEREDITH P, et al. Corrigendum:solution-processed semiconductors for next-generation photodetectors[J]. Nature Reviews Materials, 2017, 2(3):16100. doi: 10.1038/natrevmats.2016.100
    [63]
    HAN H V, LU A Y, LU L S, et al.. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment[J]. Acs Nano, 2016, 10(1):1454-1461. doi: 10.1021/acsnano.5b06960
    [64]
    KAGAN C R, LIFSHITZ E, SARGENT E H, et al.. Building devices from colloidal quantum dots[J]. Science, 2016, 353(6302):885. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227499384/
    [65]
    GEYER S M, SCHERER J M, MOLOTO N, et al.. Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications[J]. Acs Nano, 2011, 5(7):5566-5571. doi: 10.1021/nn2010238
    [66]
    JIANG L, SUN H, XU B, et al.. The spectrum of quantum dots film for UV CCD[J]. Journal of Spectroscopy, 2013:1-5.
    [67]
    BHASKARAN S. First report on quantum dot coated CMOS CID arrays for the UV and VUV[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2013, 8859(10):1877-1889.
    [68]
    KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science, 2017, 358(6364):745-750. doi: 10.1126/science.aam7093
    [69]
    ZHOU Q C, BAI Z L, LU W G, et al.. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28(41):9163-9168. doi: 10.1002/adma.201602651
    [70]
    ZHANG M, WANG L, MENG L, et al.. Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection[J]. Advanced Optical Materials, 2018:1800077.
    [71]
    LIU Y, WEISS NO, DUAN X, et al.. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 2016, 1(9):16042. doi: 10.1038/natrevmats.2016.42
    [72]
    CHHOWALLA M, JENA D, ZHANG H. Two-dimensional semiconductors for transistors[J]. Nature Reviews Materials, 2016, 1(11):16052. doi: 10.1038/natrevmats.2016.52
    [73]
    SUN Z, MARTINEZ A, WANG F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4):227-238. doi: 10.1038/nphoton.2016.15
    [74]
    ELKADY M F, SHAO Y, KANER R B. Graphene for batteries, supercapacitors and beyond[J]. Nature Reviews Materials, 2016, 1(7):16033. doi: 10.1038/natrevmats.2016.33
    [75]
    WANG Y M, DING K, SUN B Q, et al.. Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications[J]. Nano Research, 2016, 9(1):72-93. doi: 10.1007/s12274-016-1003-3
    [76]
    LI G, LIU L, WU G, et al.. Self-powered UV-near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction[J]. Small, 2016, 12(36):5019-5026. doi: 10.1002/smll.201600835
    [77]
    GUO X C, HAO N H, GUO D Y, et al.. β -Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity[J]. Journal of Alloys & Compounds, 2016, 660:136-140.
    [78]
    ZHANG Y, YU Y, MI L, et al.. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors[J]. Small, 2016, 12(8):1062-1071. doi: 10.1002/smll.201502923
    [79]
    LOU Z, ZENG L, WANG Y, et al.. High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared[J]. Optics Letters, 2017, 42(17):3335-3338. doi: 10.1364/OL.42.003335
    [80]
    JI T, LIU Q, ZOU R, et al.. An interface engineered multicolor photodetector based on n-Si(111)/TiO2 nanorod array heterojunction[J]. Advanced Functional Materials, 2016, 26(9):1400-1410. doi: 10.1002/adfm.201504464
    [81]
    LING C C, GUO T C, LU W B, et al. Ultrahigh photosensitivity and detectivity of hydrogen-treated TiO2 nanorod array/SiO2/Si heterojunction broadband photodetectors and its mechanism[J]. Journal of Materials Chemistry C, 2018, 6(9):2319-2328. doi: 10.1039/C7TC05580C
    [82]
    FLEMBAN T H, HAQUE M A, AJIA I A, et al.. A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity[J]. Acs Applied Materials & Interfaces, 2017, 9(42):37120-37127.
    [83]
    ZHANG H, ZHANG X, LIU C, et al.. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors[J]. Acs Nano, 2016, 10(5):5113-5122. doi: 10.1021/acsnano.6b00272
    [84]
    YAO J D, ZHENG Z Q, SHAO J M, et al.. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition[J]. Nanoscale, 2015, 7(36):14974-14981. doi: 10.1039/C5NR03361F
    [85]
    YAO J, SHAO J, WANG Y, et al.. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments[J]. Nanoscale, 2015, 7(29):12535-12541. doi: 10.1039/C5NR02953H
    [86]
    LEE GH, CUI X, KIM P. Atomically thin p-n junctions with van der Waals heterointerfaces[J]. Nature Nanotechnology, 2014, 9(9):676-681. doi: 10.1038/nnano.2014.150
    [87]
    GOOSSENS S, NAVICKAITE G, MONASTERIO C, et al.. Broadband image sensor array based on graphene CMOS integration[J]. Nature Photonics, 2017, 11(6):366-371. doi: 10.1038/nphoton.2017.75
    [88]
    阮宁娟, 苏云.国外紫外空间探测器发展综述[J].航天返回与遥感, 2008, 29(3):71-78. doi: 10.3969/j.issn.1009-8518.2008.03.013

    RUAN N J, SU Y. Summarization of overseas space ultraviolet instrument development[J]. Spacecraft Recovery & Remote Sensing, 2008, 29(3):71-78.(in Chinese) doi: 10.3969/j.issn.1009-8518.2008.03.013
    [89]
    张燕, 龚海梅, 白云, 等.空间用紫外探测及AlGaN探测器的研究进展[J]. 与红外, 2006, 36(11):1009-1012. doi: 10.3969/j.issn.1001-5078.2006.11.001

    ZHANG Y, GONG H M, BAI Y, et al. UV detection applied to space and the research development of AlGaN detector[J]. Laser & Infrared, 2006, 36(11):1009-1012.(in Chinese) doi: 10.3969/j.issn.1001-5078.2006.11.001
    [90]
    GLADSTONE G R, PERSYN S C, ETERNO J S, et al.. The ultraviolet spectrograph on NASA's Juno mission[J]. Space Science Reviews, 2017, 213:1-27. doi: 10.1007/s11214-017-0430-0
    [91]
    MENDE S B, FREY H U, RIDER K, et al. The far ultraviolet imager on the icon mission[J]. Space Science Reviews, 2017, 212:1-42. doi: 10.1007/s11214-016-0319-3
    [92]
    MCMASTER M, AL E. Wide Field and Planetary Camera 2 Instrument Handbook v. 10.0[M]. Wide Field & Planetary Camera Hst Instrument Handbook, 2008.
    [93]
    DRESSEL L. Wide Field Camera 3 Instrument Handbook for Cycle 21 v. 5.0[M]. Wide Field Camera 3, HST Instrument Handbook, 2012.
    [94]
    KHAN A R, CHORDIA P, GANDORFER A M. The solar ultraviolet imaging telescope onboard aditya-L1[C]. SPIE Astronomical Telescopes and Instrumentation, 2016: 990504.
    [95]
    KLUKKERT M, WU J X, RANTANEN J, et al.. Rapid assessment of tablet film coating quality by multispectral UV imaging[J]. Aaps Pharmscitech, 2016, 17(4):958-967. doi: 10.1208/s12249-015-0414-x
    [96]
    石峰, 程宏昌, 闫磊, 等.紫外探测技术[M].北京:国防工业出版社, 2017.

    SHI F, CHENG H CH, YAN L. UV Detection Tchnique[M]. Beijing:National Defense Industry Press, 2017.(in Chinese)
    [97]
    PRATT H, HASSANIN K, TROUGHTON L D, et al.. UV imaging reveals facial areas that are prone to skin cancer are disproportionately missed during sunscreen application[J]. Plos One, 2017, 12(10):e0185297. doi: 10.1371/journal.pone.0185297
    [98]
    LI Y, WANG T, GUO L, et al.. Detection and analysis of high voltage electrical equipment corona discharge based on ultraviolet imaging technology[C]. Control and Decision Conference, 2017: 6928-6931.
    [99]
    叶柏松, 袁永刚, 王继强, 等.一种便携式电晕检测紫外相机的设计[J].红外, 2013, 34(4):24-27. doi: 10.3969/j.issn.1672-8785.2013.04.005

    YE B S, YUAN Y G, WANG J Q, et al.. Design of a portable UV camera for corona detection[J]. Infrared, 2013, 34(4):24-27.(in Chinese) doi: 10.3969/j.issn.1672-8785.2013.04.005
    [100]
    刘建卓, 王学进, 黄剑波, 等.三波段电晕检测光学系统的设计[J].光学精密工程, 2011, 19(6):1228-1234. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201106008

    LIU J ZH, WANG X J, HUANG J B, et al.. Design of three-band optical system used in corona detection[J]. Opt. Precision Eng., 2011, 19(6):1228-1234.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201106008
    [101]
    张洁.机载导弹逼近告警技术发展分析[J].舰船电子工程, 2014, 34(11):19-23. http://d.old.wanfangdata.com.cn/Periodical/jcdzgc201411006

    ZHANG J. Development and analysis of airborne missile warning technology[J]. Ship Electronic Engineering, 2014, 34(11):19-23.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jcdzgc201411006
    [102]
    THOMPSON N J, WILSON M W, CONGREVE D N, et al.. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals[J]. Nature Materials, 2014, 13(11):1039-1043. doi: 10.1038/nmat4097
    [103]
    SONI A, PUROHIT S, HEGDE R S. Multilayered aluminum plasmonic metasurfaces for ultraviolet bandpass filtering[J]. IEEE Photonics Technology Letters, 2017, 29(1):110-113. doi: 10.1109/LPT.2016.2629504
    [104]
    MACKENTY J W. A near ultraviolet solar-blind telescope design using silicon CCD detectors[C]. Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 990538.
    [105]
    LI W D, CHOU S Y. Solar-blind deep-UV band-pass filter(250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography[J]. Optics Express, 2010, 18(2):931-937. doi: 10.1364/OE.18.000931
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(4974) PDF downloads(506) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map