Volume 12Issue 3
Jun. 2019
Turn off MathJax
Article Contents
WANG Shao-xin, QI Ke-qi, WANG Yu-kun, WANG Zhi, CHEN Li-heng. Study on loss of performance in inertial sensors due to electrode asymmetry[J]. Chinese Optics, 2019, 12(3): 455-462. doi: 10.3788/CO.20191203.0455
Citation: WANG Shao-xin, QI Ke-qi, WANG Yu-kun, WANG Zhi, CHEN Li-heng. Study on loss of performance in inertial sensors due to electrode asymmetry[J].Chinese Optics, 2019, 12(3): 455-462.doi:10.3788/CO.20191203.0455

Study on loss of performance in inertial sensors due to electrode asymmetry

doi:10.3788/CO.20191203.0455
Funds:

Leading Special Project of Chinese Academy of SciencesXDA15020704

More Information
  • Corresponding author:QI Ke-qi, E-mail:qikeqi1985@126.com
  • Received Date:10 Apr 2019
  • Rev Recd Date:25 Apr 2019
  • Publish Date:01 Jun 2019
  • Inertial sensors are widely used to measure small disturbances in acceleration caused by non-conservative forces in space and to realize the drag-free control of spacecrafts in scientific experiments, such as earth gravity field inversion and equivalent principle verification. In the space gravitational wave detection researchbeing carried out at home and abroad, the inertial sensor is used as the core measurement load to shield external noise and achieve free-fall motion of the Test Mass in the direction of the space sensitive axis through electrostatic control. In this paper, on the basis of the electrostatic suspension inertial sensor capacitor structures, with consideration to the working principle of the electrostatic force driving control system and based on actual processing conditions, the source of error in the system asymmetry is analyzed. Through comparative analysis of the system's performance effects on various asymmetry conditions, the asymmetry of the electrods is obtained, especially in the range of high loss in performance. On this basis, combined with the actual processing conditions, the basic requirements to control the dimensional error of the machining line within 10 μm and the area asymmetry between 1% and 2% are obtained, so as to reduce the measurement range limitation of the system and improve its scientific goal.

  • loading
  • [1]
    LAUBEN D, ALLEN G, BENCZE W, et al.. Electrostatic sensing and forcing electronics performance for the LISA Pathfinder gravitational reference sensor[J]. AIP Conference Proceedings, 2006, 873:576-582. doi:10.1063/1.2405102
    [2]
    ZOELLNER A, HULTGREN E, SUN K X. Integrated differential optical shadow sensor for modular gravitational reference sensor[C]. Proceedings of the 8th International LISA Symposium, Stanford University, USA, 2013.
    [3]
    SUMNER T J. The STEP and GAUGE missions[J]. Space Science Reviews, 2009, 148(1-4):475-487. doi:10.1007/s11214-009-9558-x
    [4]
    SPEAKE C C, ASTON S M. An interferometric sensor for satellite drag-free control[J]. Classical and Quantum Gravity, 2005, 22(10):S269-S277. doi:10.1088/0264-9381/22/10/019
    [5]
    罗子人, 钟敏, 边星, 等.地球重力场空间探测:回顾与展望[J].力学进展, 2014, 44:201408. doi:10.6052/1000-0992-14-047

    LUO Z R, ZHONG M, BIAN X, et al.. Mapping earth's gravity in space:review and future perspective[J]. Advances in Mechanics, 2014, 44: 201408.(in Chinese) doi:10.6052/1000-0992-14-047
    [6]
    NOBILI A M, ANSELMI A. Relevance of the weak equivalence principle and experiments to test it:lessons from the past and improvements expected in space[J]. Physics Letters A, 2018, 382(33):2205-2218. doi:10.1016/j.physleta.2017.09.027
    [7]
    王智, 马军, 李静秋.空间引力波探测计划-LISA系统设计要点[J].中国光学, 2015, 8(6):980-987. //www.illord.com/CN/abstract/abstract9334.shtml

    WANG ZH, MA J, LI J Q. Space-based gravitational wave detection mission:design highlights of LISA system[J]. Chinese Optics, 2015, 8(6):980-987.(in Chinese) //www.illord.com/CN/abstract/abstract9334.shtml
    [8]
    HUANG T, LVHR H, WANG H, et al.. The relationship of high-latitude thermospheric wind with ionospheric horizontal current, as observed by CHAMP satellite[J]. Journal of Geophysical Research:Space Physics, 2017, 122(12):12378-12392. doi:10.1002/2017JA024614
    [9]
    SIEMES C. Improving GOCE cross-track gravity gradients[J]. Journal of Geodesy, 2018, 92(1-2):33-45. http://cn.bing.com/academic/profile?id=664df238f4bf8c7d8e567c6c2baf0665&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    FRAPPART F, RAMILLIEN G. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment(GRACE) satellite mission:a review[J]. Remote Sensing, 2018, 10(6):829. doi:10.3390/rs10060829
    [11]
    TOUBOUL P, MÉTRIS G, RODRIGUES M, et al.. MICROSCOPE mission:first results of a space test of the equivalence principle[J]. Physical Review Letters, 2017, 119(23):231101. doi:10.1103/PhysRevLett.119.231101
    [12]
    ARMANO M, AUDLEY H, AUGER G, et al.. Sub-femto-g free fall for space-based gravitational wave observatories:LISA pathfinder results[J]. Physical Review Letters, 2016, 116(23):231101. doi:10.1103/PhysRevLett.116.231101
    [13]
    FLECHTNER F, DAHLE C, LANDERER F, et al.. GRACE follow-on: current mission status and next steps[C]. Proceedings of EGU General Assembly Conference Abstracts, 2018: 8990.
    [14]
    ANDERSON G, ANDERSON J, ANDERSON M, et al.. Experimental results from the ST7 mission on LISA Pathfinder[J]. Physical Review D, 2018, 98(10):102005. doi:10.1103/PhysRevD.98.102005
    [15]
    彭利荣, 马占龙, 王高文, 等.超薄光学元件精密加工关键技术[J].中国光学, 2015, 8(6):964-970. //www.illord.com/CN/abstract/abstract9356.shtml

    PENG L R, MA ZH L, WANG G W, et al.. Key technology of ultra-thin optical element precision manufacture[J]. Chinese Optics, 2015, 8(6):964-970.(in Chinese) //www.illord.com/CN/abstract/abstract9356.shtml
    [16]
    JOSSELIN V, TOUBOUL P, KIELBASA R. Capacitive detection scheme for space accelerometers applications[J]. Sensors and Actuators A:Physical, 1999, 78(2-3):92-98. doi:10.1016/S0924-4247(99)00227-7
    [17]
    FAN D, LIU Y F, HAN F T, et al.. Identification and adjustment of the position and attitude for the electrostatic accelerometer's proof mass[J]. Sensors and Actuators A:Physical, 2012, 187:190-193. doi:10.1016/j.sna.2012.08.037
    [18]
    LISA Pathfinder Collaboration. LISA pathfinder: first steps to observing gravitational waves from space[C]. Proceedings of 11th International LISA Symposium, IOP Publishing, 2017.
    [19]
    BORTOLUZZI D, FOULON B, MARIRRODRIGA C G, et al.. Object injection in geodesic conditions:in-flight and on-ground testing issues[J]. Advances in Space Research, 2010, 45(11):1358-1379. doi:10.1016/j.asr.2010.01.023
    [20]
    LI G, WU S C, ZHOU Z B, et al.. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers[J]. Review of Scientific Instruments, 2013, 84(12):125004. doi:10.1063/1.4833398
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(2668) PDF downloads(187) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map