Citation: | CHAI Guo-zhi, HUANG Liang, QIAO Liang, ZHANG Guan-mao. Effect of the on-board residual magnetism on inertial sensors[J].Chinese Optics, 2019, 12(3): 515-525.doi:10.3788/CO.20191203.0515 |
[1] |
DANZMANNK. LISA: Laser Interferometer Space Antenna[R]. A proposal in response to the ESA call for L3 mission concepts, ESA, 2017.
|
[2] |
ABBOTT B P, ABBOTT R, ABBOTT T D,
et al.. Observation of gravitational waves from a binary black hole merger[J].
Physical Review Letters, 2016, 116:061102.
doi:10.1103/PhysRevLett.116.061102
|
[3] |
黄双林, 龚雪飞, 徐鹏, 等.空间引力波探测——天文学的一个新窗口[J].中国科学:物理学力学天文学, 2017, 47(1):010404.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201701004
HUANG SH L, GONG X F, XU P,
et al.. Gravitational wave detection in space-a new window in astronomy[J].
Scientia Sinica: Physica, Mechanica, Astronomica, 2017, 47(1):010404.(in Chinese)
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201701004
|
[4] |
SANDERS J, DYNE A, GOULD K,
et al.. LISA Pathfinder MC & Magnetic control Plan[R]. S2.ASU.PL.2010, 3, 1-25.
|
[5] |
ARMANO M, AUOLEY H, AUGER G,
et al.. Sub-femto-g free fall for space-based gravitational wave observatories:LISA pathfinder results[J].
Physical Review Letters, 2016, 116(23):231101.
doi:10.1103/PhysRevLett.116.231101
|
[6] |
WANNER G. Space-based gravitational wave detection and how LISA Pathfinder successfully paved the way[J].
Nature Physics, 2019, 15(3):200-202.
doi:10.1038/s41567-019-0462-3
|
[7] |
GUO H, WU J.
Space Science and Technology in China:A Roadmap to 2050[M]. Beijing:Science Press, 2010.
|
[8] |
龚雪飞, 徐生年, 袁业飞, 等.空间 干涉引力波探测与早期宇宙结构形成[J].天文学进展, 2015, 33(1):59-83.
doi:10.3969/j.issn.1000-8349.2015.01.04
GONG X F, XU SH N, YUAN Y F,
et al.. Laser interferometric gravitational wave detection in space and structure formation in the early universe[J].
Progress in Astronomy, 2015, 33(1):59-83.(in Chinese)
doi:10.3969/j.issn.1000-8349.2015.01.04
|
[9] |
LUO J, CHEN L S, DUAN H Z,
et al. TianQin:a space-borne gravitational wave detector[J].
Classical and Quantum Gravity, 2016, 33(3):035010.
doi:10.1088/0264-9381/33/3/035010
|
[10] |
CYRANOSKI D. Chinese gravitational-wave hunt hits crunch time[J].
Nature, 2016, 531(7593):150-151.
doi:10.1038/531150a
|
[11] |
SHAUL D N A, ARAUJ O H M, ROCHESTER G K,
et al.. Evaluation of disturbances due to test mass charging for LISA[J].
Classical and Quantum Gravity, 2005, 22(10SI):S297-S309.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=391be90896f39d607313e77b1f2bf68f
|
[12] |
DIAZ-AGUIL M. Magnetic diagnostics algorithms for LISA pathfinder: system identification and data analysis[D]. Barcelona: Universitat Polit cnica de Catalunya, Institute of Space Studies of Catalonia(IEEC), 2011.
http://www.ice.csic.es/view_event.php?EID=639
|
[13] |
HUELLER M, ARMANO M, CARBONE L,
et al.. Measuring the LISA test mass magnetic properties with a torsion pendulum[J].
Classical and Quantum Gravity, 2005, 22(10SI):S521-S526.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c9d2f92e15d502c97413dc718404377
|
[14] |
LOBO A, DIAZ-AGUIL M. Magnetic experiments on board the LTP[R]. Tech. Rep. S2-IEC-TN-3044, Catalunya: IEEC 2010.
|
[15] |
DIAZ-AGUIL M, GARC A-BERRO E, LOBO A. LTP Magnetic Field Interpolation[R]. Tech. Rep. S2-IEC-OTH-3026, Catalunya: IEEC, 2008.
|
[16] |
JUNGE A, MARLIANI F. Prediction of DC magnetic fields for magnetic cleanliness on spacecraft[C]. 2011
IEEE International Symposium on Electromagnetic Compatibility,
Long Beach,
CA,
USA2011: 834-839.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6038424
|
[17] |
MEHLEM K. Multiple magnetic dipole modeling and field prediction of satellites[J].
IEEE Transactions on Magnetics, 1978, 14(5):1064-1071.
doi:10.1109/TMAG.1978.1059983
|
[18] |
SANDERS J, DYNE A, GOULD K,
et al.. LISA pathfinder EMC & magnetic control plan[R]. Tech. Rep. S2-ASU-PL-2010, Hertfordshire: Astrium 2005.
|
[19] |
Billingsley Aerospace & Defense. Spaceight Magnetometer Acceptance Router: TFM100G4[R]. Tech. Rep. SN 114-118, Billingsley, 2007.
|
[20] |
王嘉.基于磁通门技术的直流漏电流检测方法及实现[D].成都: 电子科技大学, 2016.
http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D00990944
WANG J. Design and implementation of DC leakage current detection on fluxgate technology[D]. Chengdu: University of Electronic Science and Technology of China, 2016.(in Chinese)
http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D00990944
|
[21] |
MARTIN I M. Design and assessment of a low-frequency magnetic measurement system for eLISA[D]. Barcelona: Universitat Politecnica de Catalunya, Institute of Space Studies of Catalonia(IEEC), 2015.
|
[22] |
KOELLE D. High transition temperature superconducting quantum interference devices:basic concepts, fabrication and applications[J].
Journal of Electroceramics, 1999, 3(2):195-212.
doi:10.1023/A:1009903428803
|
[23] |
STUTZKE N A, RUSSEK S E, PAPPAS D P,
et al.. Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors[J].
Journal of Applied Physics, 2005, 97(10):10Q107.
doi:10.1063/1.1861375
|
[24] |
MultiDimension Technology Co., MMLP57F TMR Linear Sensor[R]. Tech. Rep. 1.3, 2015.
|
[25] |
HONEYWELL, 1- and 2-Axis Magnetic Sensors HMC1001/1002/1021/1022[R]. Tech. Rep. 900248 Rev C, Honeywel, 2008.
|
[26] |
DUFAY B, SAEZ S, DOLABDJIAN C,
et al.. Development of a high sensitivity giant magneto-impedance magnetometer:comparison with a commercial flux-gate[J].
IEEE Transactions on Magnetics, 2013, 49(1):85-88.
doi:10.1109/TMAG.2012.2219579
|
[27] |
UCHIYAMA T, HAMADA N, CAI C. Development of multicore magneto-impedance sensor for stable pico-Tesla resolution[C]. In Seventh International Conference on Sensing Technology, Wellington, New Zealand, 2013: 573-577.
|
[28] |
JANOSEK M, RIPKA P. PCB sensors in fluxgate magnetometer with controlled excitation[J].
Sensors and Actuators A:Physical, 2009, 151(2):141-144.
doi:10.1016/j.sna.2009.02.002
|
[29] |
CHONG L, JIAN L, ZHEN Y,
et al.. Improved micro fluxgate sensor with double-layer Fe-based amorphous core[J].
Microsystem Technologies, 2013, 19(2):167-172.
doi:10.1007/s00542-012-1523-z
|
[30] |
LUONG V, CHANG C, JENG J,
et al.. Reduction of low-frequency noise in tunneling-magnetoresistance sensors with a modulated magnetic shielding[J].
IEEE Transactions on Magnetics, 2014, 50(11):1-4.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2176b180fd5d45fbe3d3e544512d45ce
|
[31] |
SCHWINDT P D D, LINDSETH B, KNAPPE S,
et al.. Chip-scale atomic magnetometer with improved sensitivity by use of the Mxtechnique[J].
Applied Physics Letters, 2007, 90(8):081102.
doi:10.1063/1.2709532
|
[32] |
MATEOS I, RAMOS-CASTRO J, LOBO A. Low-frequency noise characterization of a magnetic field monitoring system using an anisotropic magnetoresistance[J].
Sensors and Actuators A:Physical, 2015, 235:57-63.
doi:10.1016/j.sna.2015.09.021
|
[33] |
MATEOS I, SNCHEZ-M NGUEZ R, RAMOS-CASTRO J. Design of a CubeSat payload to test a magnetic measurement system for space-borne gravitational wave detectors[J].
Sensors and Actuators A:Physical, 2018, 273:311-316.
doi:10.1016/j.sna.2018.02.040
|
[34] |
MOHRI K, KOHSAWA T, KAWASHIMA K,
et al.. Magneto-inductive effect(MI effect) in amorphous wire[J].
IEEE Transactions on Magnetics, 1992, 28:3150-3152.
doi:10.1109/20.179741
|
[35] |
MOHRI K, UCHIYAMA T, PANINA L V. Recent advances of micro magnetic sensors and sensing application[J].
Sensors and Actuators A:Physical, 1997, 59:1-8.
doi:10.1016/S0924-4247(97)80141-0
|
[36] |
ATKINSON D, SQUIRE P T, MAYLIN M G,
et al.. An integrating magnetic sensor based on the giant magneto-impedance effect[J].
Sensors and Actuators A:Physical, 2000, 81(1-3):82-85.
doi:10.1016/S0924-4247(99)00091-6
|
[37] |
MOHRI K, UCHIYAMA T, SHEN L P,
et al.. Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors(MI sensor and SI sensor) for intelligent measurements and controls[J].
Journal of Magnetism and Magnetic Materials, 2002, 249(1-2):351-356.
doi:10.1016/S0304-8853(02)00558-9
|
[38] |
NESTERUK K, KUZMINSKI M, LACHOWICZ H K. Novel magnetic field meter based on giant magneto-impedance(GMI) effect[J].
Sensors&
Transducers Magazine, 2006, 65:515-520.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001653317
|
[39] |
YABUKAMI S, MAWATARI H, HORIKOSHI N,
et al.. A design of highly sensitive GMI sensor[J].
Journal of Magnetism and Magnetic Materials, 2005, 290(2SI):1318-1321.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80edabc8ced1652650e2631a7506e70c
|
[40] |
HONKURA Y. Development of amorphous wire type MI sensors for automobile use[J].
Journal of Magnetism and Magnetic Materials, 2002, 249(1-2):375-381.
doi:10.1016/S0304-8853(02)00561-9
|
[41] |
NISHIBE Y, YAMADERA H, OHTA N,
et al.. Thin film magnetic field sensor utilizing magneto impedance effect[J].
Sensors and Actuators A:Physical, 2000, 82(1-3):155-160.
doi:10.1016/S0924-4247(99)00327-1
|