Citation: | WANG Lan, DONG Yuan, GAO Song, CHEN Kui-yi, FANG Fa-cheng, JIN Guang-yong. Research progress of perovskite materials in the field of lasers[J].Chinese Optics, 2019, 12(5): 993-1014.doi:10.3788/CO.20191205.0993 |
[1] |
王圣之.有机-无机杂化钙钛矿的合成与光学性能研究[D].南京: 东南大学, 2016.
http://cdmd.cnki.com.cn/Article/CDMD-10286-1016246732.htm
WANG SH ZH. Synthesis and optical properties of organic-inorganic hybrid perovskite[D]. Nanjing: Southeast University, 2016.(in Chinese)
http://cdmd.cnki.com.cn/Article/CDMD-10286-1016246732.htm
|
[2] |
陈聪.钙钛矿氧化物薄膜的电学及光学非线性特性研究[D].合肥: 中国科学技术大学, 2011.
http://cdmd.cnki.com.cn/Article/CDMD-10358-1011124938.htm
CHEN C. Nonlinear electrical and optical properties of perovskite oxide films[D]. Hefei: University of Science and Technology of China, 2011.(in Chinese)
http://cdmd.cnki.com.cn/Article/CDMD-10358-1011124938.htm
|
[3] |
张冰.有机卤化物CH
3NH
3PbX
3材料光学性能研究[D].北京: 北京交通大学, 2017.
http://xuewen.cnki.net/CMFD-1017086533.nh.html
ZHANG B. Study on the optical properties of organic halide CH
3NH
3PbX
3materials[D]. Beijing: Beijing Jiaotong University, 2017.(in Chinese)
http://xuewen.cnki.net/CMFD-1017086533.nh.html
|
[4] |
XING G CH, MATHEWS N, LIM S S, et al.. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 2014, 13(5):476-480.
doi:10.1038/nmat3911
|
[5] |
SUTHERLAND B R, HOOGLAND S, ADACHI M M, et al.. Conformal organohalide perovskites enable lasing on spherical resonators[J]. ACS Nano, 2014, 8(10):10947-10952.
doi:10.1021/nn504856g
|
[6] |
邬承就, 王强民, 赵梅荣, 等.694 nm 泵浦的Tm:YAG可调谐 器[J].量子电子学报, 1998, 15(1):60-65.
http://d.old.wanfangdata.com.cn/Periodical/zhyygrxzz200208010
WU CH J, WANG Q M, ZHAO M R, et al.. Tm:YAG tunable lasers pumped by a 694 nm laser[J]. Chinese Journal of Quantum Electronics, 1998, 15(1):60-65.(in Chinese)
http://d.old.wanfangdata.com.cn/Periodical/zhyygrxzz200208010
|
[7] |
张瑞君.波长可调谐 器开发现状及应用市场前景[J].中国电子商情:基础电子, 2008(7):52-55.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802254561
ZHANG R J. Development status and application market prospects of wavelength tunable lasers[J]. China Electronic Market, 2008(7):52-55.(in Chinese)
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802254561
|
[8] |
CHENG Z Y, LIN J. Layered organic-inorganic hybrid perovskites:structure, optical properties, film preparation, patterning and templating engineering[J]. CrystEngComm, 2010, 12(10):2646-2662.
doi:10.1039/c001929a
|
[9] |
ZHU H M, FU Y P, MENG F, et al.. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14(6):636-642.
doi:10.1038/nmat4271
|
[10] |
FU Y P, ZHU H M, SCHRADER A W, et al.. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability[J]. Nano Letters, 2016, 16(2):1000-1008.
doi:10.1021/acs.nanolett.5b04053
|
[11] |
SALIBA M, WOOD S M, PATEL J B, et al.. Structured organic-inorganic perovskite toward a distributed feedback laser[J]. Advanced Materials, 2016, 28(5):923-929.
doi:10.1002/adma.201502608
|
[12] |
XING G CH, KUMAR M H, CHONG W K, et al.. Solution-processed tin-based perovskite for near-infrared lasing[J]. Advanced Materials, 2016, 28(37):8191-8196.
doi:10.1002/adma.201601418
|
[13] |
HE X X, LIU P, ZHANG H H, et al.. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite[J]. Advanced Materials, 2017, 29(12):1604510.
doi:10.1002/adma.201604510
|
[14] |
EATON S W, LAI M L, GIBSON N A, et al.. Lasing in robust cesium lead halide perovskite nanowires[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8):1993-1998.
doi:10.1073/pnas.1600789113
|
[15] |
YAKUNIN S, PROTESESCU L, KRIEG F, et al.. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6:8056.
doi:10.1038/ncomms9056
|
[16] |
ZHANG Q, SU R, LIU X F, et al.. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets[J]. Advanced Functional Materials, 2016, 26(34):6238-6245.
doi:10.1002/adfm.201601690
|
[17] |
HUANG CH Y, ZOU CH, MAO CH Y, et al.. CsPbBr
3perovskite quantum dot vertical cavity lasers with low threshold and high stability[J]. ACS Photonics, 2017, 4(9):2281-2289.
doi:10.1021/acsphotonics.7b00520
|
[18] |
HARWELL J R, WHITWORTH G L, TURNBULL G A, et al.. Green perovskite distributed feedback lasers[J]. Scientific Reports, 2017, 7(1):11727.
doi:10.1038/s41598-017-11569-3
|
[19] |
TANG B, DONG H X, SUN L X, et al.. Single-mode lasers based on cesium lead halide perovskite submicron spheres[J]. ACS Nano, 2017, 11(11):10681-10688.
doi:10.1021/acsnano.7b04496
|
[20] |
JIANG L, LIU R M, SU R L, et al.. Continuous wave pumped single-mode nanolasers in inorganic perovskites with robust stability and high quantum yield[J]. Nanoscale, 2018, 10(28):13565-13571.
doi:10.1039/C8NR03830A
|
[21] |
ZHANG Q, HA S T, LIU X F, et al.. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 2014, 14(10):5995-6001.
doi:10.1021/nl503057g
|
[22] |
LIAO Q, HU K, ZHANG H H, et al.. Perovskite microdisk microlasers self-assembled from solution[J]. Advanced Materials, 2015, 27(22):3405-3410.
doi:10.1002/adma.201500449
|
[23] |
SCHMIDT L C, PERTEG S A, GONZ LEZ-CARRERO S, et al.. Nontemplate synthesis of CH
3NH
3PbBr
3perovskite nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(3):850-853.
doi:10.1021/ja4109209
|
[24] |
LIU X F, NIU L, WU CH Y, et al.. Periodic Organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing[J]. Advanced Science, 2016, 3(11):1600137.
doi:10.1002/advs.201600137
|
[25] |
WANG Y, LI X M, NALLA V, et al.. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals[J]. Advanced Functional Materials, 2017, 27(13):1605088.
doi:10.1002/adfm.201605088
|
[26] |
ZHAO J Y, YAN Y L, WEI C, et al.. Switchable single-mode perovskite microlasers modulated by responsive organic microdisks[J]. Nano Letters, 2018, 18(2):1241-1245.
doi:10.1021/acs.nanolett.7b04834
|
[27] |
LI G H, CHE T, JI X D, et al.. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite[J]. Advanced Functional Materials, 2019, 29(2):1805553.
doi:10.1002/adfm.201805553
|
[28] |
WANG X X, CHEN H ZH, ZHOU H, et al.. Room-temperature high-performance CsPbBr
3perovskite tetrahedral microlasers[J]. Nanoscale, 2019, 11(5):2393-2400.
doi:10.1039/C8NR09856E
|
[29] |
YU Y, CHEE Y C, PENG XY, et al.. High power 355 nm diode-pumped solid-state laser[J]. Proceedings of SPIE, 2015, 9524:95241A.
|
[30] |
AUBERT N, GEORGES T, CHAUZAT C, et al.. Low-cost 7 mW CW 355-nm diode-pumped intracavity frequency-tripled microchip laser[J]. Proceedings of SPIE, 2006, 6100:610008.
doi:10.1117/12.644165
|
[31] |
LIU Q, YAN X P, GONG M L, et al.. High-power 266 nm ultraviolet generation in yttrium aluminum borate[J]. Optics Letters, 2011, 36(14):2653-2655.
doi:10.1364/OL.36.002653
|
[32] |
NIKITIN D G, BYALKOVSKIY O A, VERSHININ O I, et al.. Sum frequency generation of UV laser radiation at 266 nm in LBO crystal[C]. Proceedings of 2014 International Conference Laser Optics, IEEE, 2014.
|
[33] |
YAN CH, WANG Y Y, XU D G, et al.. High-power high-efficiency picosecond 355nm ultraviolet laser based on La
2CaB
10O
19crystal[J]. Proceedings of SPIE, 2014, 9266:92661G.
doi:10.1117/12.2074323
|
[34] |
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites(CsPbX
3, X=Cl, Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6):3692-3696.
doi:10.1021/nl5048779
|
[35] |
杨志胜, 柯蔚芳, 王艳香, 等.杂化钙钛矿(HOC
2H
4NH
3)
2CuCl
4的制备与表征[J].无机材料学报, 2017, 32(10):1063-1067.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjclxb201710009
YANG ZH SH, KE W F, WANG Y X, et al.. Preparation and characterization of a novel hybrid Perovskite (HOC
2H
4NH
3)
2CuCl
4[J]. Journal of Inorganic Materials, 2017, 32(10):1063-1067.(in Chinese)
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjclxb201710009
|
[36] |
高允贵.用于深紫外光源的非线性光学材料[J].光电子技术与信息, 1999, 12(1):23-26.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjsyxx199901004
GAO Y G. Nonlinear optical materials for deep ultraviolet light sources[J]. Optoelectronic Technology & Information, 1999, 12(1):23-26.(in Chinese)
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjsyxx199901004
|
[37] |
XING J, LIU X F, ZHANG Q, et al.. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers[J]. Nano Letters, 2015, 15(7):4571-4577.
doi:10.1021/acs.nanolett.5b01166
|
[38] |
KAO T S, HONG K B, CHOU Y H, et al.. Localized surface plasmon for enhanced lasing performance in solution-processed perovskites[J]. Optics Express, 2016, 24(18):20696-20702.
doi:10.1364/OE.24.020696
|
[39] |
GU ZH Y, WANG K Y, SUN W ZH, et al.. Two-photon pumped CH
3NH
3PbBr
3perovskite microwire lasers[J]. Advanced Optical Materials, 2016, 4(3):472-479.
doi:10.1002/adom.201500597
|
[40] |
ZHANG W, PENG L, LIU J, et al.. Controlling the cavity structures of two-photon-pumped perovskite microlasers[J]. Advanced Materials, 2016, 28(21):4040-4046.
doi:10.1002/adma.201505927
|
[41] |
YANG B, MAO X, YANG S Q, et al.. Low Threshold two-photon-pumped amplified spontaneous emission in CH
3NH
3PbBr
3microdisks[J]. ACS Applied Materials & Interfaces, 2016, 8(30):19587-19592.
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cd83c2bcced647a3343b959b88d4c90
|
[42] |
GAO Y SH, WANG SH, HUANG C, et al.. Room temperature three-photon pumped CH
3NH
3PbBr
3perovskite microlasers[J]. Scientific Reports, 2017, 7:45391.
doi:10.1038/srep45391
|
[43] |
KUMAR M H, DHARANI S, LEONG W L, et al.. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation[J]. Advanced Materials, 2014, 26(41):7122-7127.
doi:10.1002/adma.201401991
|
[44] |
DANG Y Y, ZHOU Y A, LIU X L, et al.. Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth[J]. Angewandte Chemie International Edition, 2016, 55(10):3447-3450.
doi:10.1002/anie.201511792
|
[45] |
PARK B W, PHILIPPE B, ZHANG X L, et al.. Bismuth based hybrid perovskites A
3Bi
2I
9(A:Methylammonium or cesium) for solar cell application[J]. Advanced Materials, 2015, 27(43):6806-6813.
doi:10.1002/adma.201501978
|
[46] |
FU Y P, ZHU H M, STOUMPOS C C, et al.. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites(CsPbX
3, X=Cl, Br, I)[J]. ACS Nano, 2016, 10(8):7963-7972.
doi:10.1021/acsnano.6b03916
|
[47] |
JEON T, KIM S J, YOON J, et al.. Hybrid perovskites:effective crystal growth for optoelectronic applications[J]. Advanced Energy Materials, 2017, 7(19):1602596.
doi:10.1002/aenm.201602596
|
[48] |
VELDHUIS S A, BOIX P P, YANTARA N, et al.. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 2016, 28(32):6804-6834.
doi:10.1002/adma.201600669
|