Citation: | TAN Song-nian, DING Ya-lin, XU Yong-sen, LIU Wei-yi. Development of additively manufacturing metal mirrors[J].Chinese Optics, 2020, 13(1): 75-86.doi:10.3788/CO.20201301.0075 |
[1] |
MATSON L E, CHEN M Y, ATAD-ETTEDGUI E,
et al.Enabling materials and processes for large aerospace mirrors[J].
Proceedings of SPIE, 2008, 7018: 70180L.
doi:10.1117/12.790525
|
[2] |
康健, 宣斌, 谢京江.表面改性碳化硅基底反射镜加工技术现状[J].中国光学, 2013, 6(6): 824-833.
//www.illord.com/CN/abstract/abstract9042.shtml
KANG J, XUAN F, XIE J J. Manufacture technology status of surface modified silicon carbide mirrors[J].
Chinese Optics, 2013, 6(6): 824-833. (in Chinese)
//www.illord.com/CN/abstract/abstract9042.shtml
|
[3] |
王富国, 乔兵, 张景旭. 2m SiC反射镜柔性被动支撑系统[J].光学 精密工程, 2017, 25(10): 2591-2598.
http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201710008
WANG F G, QIAO B, ZHANG J X. Flexible passive support system for 2m SiC reflective mirror[J].
Opt. Precision Eng., 2017, 25(10): 2591-2598. (in Chinese)
http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201710008
|
[4] |
MILLER J L, FRIEDMAN E.
Photonics Rules of Thumb[M]. New York: McGraw Hill, 2003.
|
[5] |
严丛林.反射镜支撑结构设计与分析[D].成都: 中国科学院研究生院(光电技术研究所), 2013.
YAN C L. Design and analysis for the support structure of large aperture rectangular mirror[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2013. (in Chinese)
|
[6] |
HUANG Y T, FAN B, WAN Y J,
et al.Improving the performance of single point diamond turning surface with ion beam figuring[J].
Optik, 2018, 172: 540-544.
doi:10.1016/j.ijleo.2018.07.039
|
[7] |
AIKENS D M, WOLFE C R, LAWSON J K. Use of power spectral density (PSD) functions in specifying optics for the National Ignition Facility[J].
Proceedings of SPIE, 1995, 2576: 281-292.
doi:10.1117/12.215604
|
[8] |
谷抇昕.美媒展望塑造未来的18项航空航天技术[J].现代军事, 2016(12): 80-87.
http://www.cnki.com.cn/Article/CJFDTotal-XDJI201612034.htm
GU H X. The 18 media aerospace technologies that the US media look forward to shape the future[J].
Arms & Technology, 2016(12): 80-87. (in Chinese)
http://www.cnki.com.cn/Article/CJFDTotal-XDJI201612034.htm
|
[9] |
WOODARD K S, MYRICK B H. Progress on high-performance rapid prototype aluminum mirrors[J].
Proceedings of SPIE, 2017, 10181: 101810T.
http://cn.bing.com/academic/profile?id=e39bdec9f73668c3bafeb76f92f38ed7&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
WOODARD K S, COMSTOCK L E, WAMBOLDT L,
et al.Optimum selection of high performance mirror substrates for diamond finishing[J].
Proceedings of SPIE, 2016, 9822: 98220C.
http://cn.bing.com/academic/profile?id=10421dc55fcff27bb164b6a74ff56e2e&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
SCHEIDING S, GEBHARDT A, DAMM C,
et al.Method for manufacturing a mirror comprising at least one cavity and optical mirror: USA, 20140247512[P]. 2014-09-04.
|
[12] |
SWEENEY M, ACREMAN M, VETTESE T,
et al.Application and testing of additive manufacturing for mirrors and precision structures[J].
Proceedings of SPIE, 2015, 9574: 957406.
doi:10.1117/12.2189202
|
[13] |
HILPERT E, HARTUNG J, RISSE S,
et al.Precision manufacturing of a lightweight mirror body made by selective laser melting[J].
Precision Engineering, 2018, 53: 310-317.
doi:10.1016/j.precisioneng.2018.04.013
|
[14] |
BRUNELLE M, FERRALLI I, WHITSITT R,
et al.Current use and potential of additive manufacturing for optical applications[J].
Proceedings of SPIE, 2017, 10448: 104480P.
https://www.researchgate.net/publication/320435771_Current_use_and_potential_of_additive_manufacturing_for_optical_applications
|
[15] |
MICI J, ROTHENBERG B, BRISSON E,
et al.Optomechanical performance of 3D-printed mirrors with embedded cooling channels and substructures[J].
Proceedings of SPIE, 2015, 9573: 957306.
doi:10.1117/12.2188533
|
[16] |
HILPERT E, HARTUNG J, VON LUKOWICZ H,
et al.Design, additive manufacturing, processing, and characterization of metal mirror made of aluminum silicon alloy for space applications[J].
Optical Engineering, 2019, 58(9): 092613.
http://cn.bing.com/academic/profile?id=dc5a9ae9667c5d129b63370691638461&encoded=0&v=paper_preview&mkt=zh-cn
|
[17] |
HARTUNG J, BEIER M, RISSE S. Novel applications based on freeform technologies[J].
Proceedings of SPIE, 2018, 10692: 106920K.
http://cn.bing.com/academic/profile?id=9d05603193fdbc43e0a07f8ab6c38efb&encoded=0&v=paper_preview&mkt=zh-cn
|
[18] |
HEIDLER N, HILPERT E, HARTUNG J,
et al.Additive manufacturing of metal mirrors for TMA telescope[J].
Proceedings of SPIE, 2018, 10692: 106920C.
http://cn.bing.com/academic/profile?id=3ab85a4f2ff00f97f9e59fc78e4986e2&encoded=0&v=paper_preview&mkt=zh-cn
|
[19] |
ROULET M, ATKINS C, HUGOT E,
et al.3D printing for astronomical mirrors[J].
Proceedings of SPIE, 2018, 10675: 1067504.
http://cn.bing.com/academic/profile?id=416c88283bdb13bd34136daef6ed5ba8&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
STAMPFL J, HATZENBICHLER M.
Additive Manufacturing Technologies[M]. LAPERRIÉRE L, REINHART G. The International Academy for Production Engineering. Berlin, Heidelberg: Springer, 2014: 20-27.
|
[21] |
ATKINS C, FELDMAN C, BROOKS D,
et al.Topological design of lightweight additively manufactured mirrors for space[J].
Proceedings of SPIE, 2018, 10706: 107060I.
http://cn.bing.com/academic/profile?id=6446e0a09e136c8c7f728b9cc0e7e112&encoded=0&v=paper_preview&mkt=zh-cn
|
[22] |
COMSTOCK Ⅱ L E, CRIFASI J C, ROY B P,
et al.Mirror substrates with highly finishable corrosion-resistant coating: USA, 20160097885[P]. 2016-04-07.
|
[23] |
National Aeronautics and Space Administration. Additive manufactured very light weight diamond turned aspheric mirror[R].Greenbelt, Maryland: SBIR/STTR, 2017.
|
[24] |
HERZOG H, SEGAL J, SMITH J,
et al.Optical fabrication of lightweighted 3D printed mirrors[J].
Proceedings of SPIE, 2015, 9573: 957308.
doi:10.1117/12.2188197
|
[25] |
LEUTERITZ G, LACHMAYER R. Additive manufacturing of reflective optics: evaluating finishing methods[J].
Proceedings of SPIE, 2018, 10523: 105230N.
http://cn.bing.com/academic/profile?id=da130d753f75d35bc3b1e89e9ee155c6&encoded=0&v=paper_preview&mkt=zh-cn
|
[26] |
ATKINS C, FELDMAN C, BROOKS D,
et al.Additive manufactured X-ray optics for astronomy[J].
Proceedings of SPIE, 2017, 10399: 103991G.
http://cn.bing.com/academic/profile?id=eb8eadcc24f8062436604af9e24e7d35&encoded=0&v=paper_preview&mkt=zh-cn
|
[27] |
FELDMAN C, ATKINS C, BROOKS D,
et al.Design and modeling of an additive manufactured thin shell for X-ray astronomy[J].
Proceedings of SPIE, 2017, 10399: 103991H.
http://cn.bing.com/academic/profile?id=27d80bd4e329ecd165212eb810fb0977&encoded=0&v=paper_preview&mkt=zh-cn
|
[28] |
EBERLE S, REUTLINGER A, CURZADD B,
et al.Additive manufacturing of an AlSi40 mirror coated with electroless nickel for cryogenic space applications[J].
Proceedings of SPIE, 2019, 11180: 1118015.
http://cn.bing.com/academic/profile?id=7d15af765536e3c9797933e0f51548fd&encoded=0&v=paper_preview&mkt=zh-cn
|
[29] |
唐鹏钧, 何晓磊, 杨斌, 等. 选区熔化用AlSi10Mg粉末显微组织与性能[J].航空材料学报, 2018, 38(1): 47-53.
http://d.old.wanfangdata.com.cn/Periodical/hkclxb201801006
TANG P J, HE X L, YANG B,
et al.Microstructure and properties of AlSi10Mg powder for selective laser melting[J].
Journal of Aeronautical Materials, 2018, 38(1): 47-53. (in Chinese)
http://d.old.wanfangdata.com.cn/Periodical/hkclxb201801006
|
[30] |
丁莹, 杨海欧, 白静, 等. 立体成形AlSi10Mg合金的微观组织及力学性能[J].中国表面工程, 2018, 31(4): 46-54.
http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=BMGC201804006
DING Y, YANG H O, BAI J,
et al.Microstructure and mechanical property of AlSi10Mg alloy prepared by laser solid forming[J].
China Surface Engineering, 2018, 31(4): 46-54. (in Chinese)
http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=BMGC201804006
|
[31] |
胡瑞.基于拓扑优化的空间反射镜与柔性支撑结构设计方法[D].大连: 大连理工大学, 2017.
HU R. Topology optimization-based design method of space mirror and flexible support structure[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
|
[32] |
刘君欢.面向增材制造的拓扑优化结果精细化设计[D].大连: 大连理工大学, 2016.
LIU J H. Refined design of topology optimization results for additive manufacturing[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
|
[33] |
叶虎勇, 陈桂林.地球同步轨道三轴稳定卫星的扫描镜设计及考虑[J].红外技术, 2003, 25(6): 1-5, 9.
doi:10.3969/j.issn.1001-8891.2003.06.001
YE H Y, CHEN G L. Scanning mirror design considerations of 3-axis stability satellite[J].
Infrared Technology, 2003, 25(6): 1-5, 9. (in Chinese)
doi:10.3969/j.issn.1001-8891.2003.06.001
|
[34] |
谢启明, 杨静, 徐放, 等.金属非球面反射镜的加工和检测技术[J].红外技术, 2015, 37(2): 119-123.
http://d.old.wanfangdata.com.cn/Periodical/hwjs201502007
XIE Q M, YANG J, XU F,
et al.Manufacturing and test technology for metal aspherical reflector[J].
Infrared Technology, 2015, 37(2): 119-123. (in Chinese)
http://d.old.wanfangdata.com.cn/Periodical/hwjs201502007
|
[35] |
SCHAEFER J P. High precision mirror, and a method of making it: USA, 20040165296[P]. 2004-08-26.
|
[36] |
SCHAEFER J P. Advanced metal mirror processing for tactical ISR systems[J].
Proceedings of SPIE, 2013, 8713: 871306.
doi:10.1117/12.2015496
|
[37] |
HARRIS G G, MITCHELL D B, BROWN D J,
et al.Method and apparatus for fabricating a precision optical surface: USA, 8398251[P]. 2013-03-19.
|
[38] |
RISSE S, GEBHARDT A, PESCHEL T,
et al.Substrate made of an aluminum-silicon alloy or crystalline silicon, metal mirror, method for the production thereof, and use thereof: USA, 20130057952[P]. 2013-03-07.
|
[39] |
HOULLIER T, ROUSSELET N, SURREL Y,
et al.Advanced optical freeform substrates fabricated by ceramic 3D printing and controlled by deflectometry[J].
Proceedings of SPIE, 2018, 10692: 106920P.
http://cn.bing.com/academic/profile?id=49f1f275160b7c31dcf524410fb442a6&encoded=0&v=paper_preview&mkt=zh-cn
|
[40] |
ROULET M, HUGOT E, ATKINS C,
et al.Superpolished OAPs for WFIRST CGI[J].
Proceedings of SPIE, 2018, 10698: 106982Q.
|
[41] |
HEINRICH A, BÖRRET R, MERKEL M,
et al.Additive manufacturing of reflective and transmissive optics: potential and new solutions for optical systems[J].
Proceedings of SPIE, 2018, 10523: 1052302.
http://cn.bing.com/academic/profile?id=849c7d71a65cb862b18f39e87873af3a&encoded=0&v=paper_preview&mkt=zh-cn
|